| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ax8clv1 | Structured version Visualization version GIF version | ||
| Description: Lifting the distinct variable constraint on 𝑥 and 𝑦 in ax-wl-8cl 33377. (Contributed by Wolf Lammen, 27-Nov-2021.) |
| Ref | Expression |
|---|---|
| wl-ax8clv1 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvinv 1959 | . 2 ⊢ (𝑥 = 𝑦 ↔ ∃𝑢(𝑢 = 𝑥 ∧ 𝑢 = 𝑦)) | |
| 2 | ax-wl-8cl 33377 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) | |
| 3 | 2 | equcoms 1947 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) |
| 4 | ax-wl-8cl 33377 | . . . 4 ⊢ (𝑢 = 𝑦 → (𝑢 ∈ 𝐴 → 𝑦 ∈ 𝐴)) | |
| 5 | 3, 4 | sylan9 689 | . . 3 ⊢ ((𝑢 = 𝑥 ∧ 𝑢 = 𝑦) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
| 6 | 5 | exlimiv 1858 | . 2 ⊢ (∃𝑢(𝑢 = 𝑥 ∧ 𝑢 = 𝑦) → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
| 7 | 1, 6 | sylbi 207 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∃wex 1704 ∈ wcel-wl 33373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-wl-8cl 33377 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |