| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsal | Structured version Visualization version GIF version | ||
| Description: A useful equivalence related to substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) It seems proving wl-equsald 33325 first, and then deriving more specialized versions wl-equsal 33326 and wl-equsal1t 33327 then is more efficient than the other way round, which is possible, too. See also equsal 2291. (Revised by Wolf Lammen, 27-Jul-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| wl-equsal.1 | ⊢ Ⅎ𝑥𝜓 |
| wl-equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| wl-equsal | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1730 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | wl-equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 4 | wl-equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))) |
| 6 | 1, 3, 5 | wl-equsald 33325 | . 2 ⊢ (⊤ → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓)) |
| 7 | 6 | trud 1493 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ⊤wtru 1484 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |