Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-euequ1f Structured version   Visualization version   GIF version

Theorem wl-euequ1f 33356
Description: euequ1 2476 proved with a distinctor. (Contributed by Wolf Lammen, 23-Sep-2020.)
Assertion
Ref Expression
wl-euequ1f (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦)

Proof of Theorem wl-euequ1f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ax6ev 1890 . . 3 𝑧 𝑧 = 𝑦
2 nfv 1843 . . . 4 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
3 nfnae 2318 . . . . 5 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
4 nfeqf2 2297 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
5 equequ2 1953 . . . . . . 7 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
65equcoms 1947 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = 𝑦𝑥 = 𝑧))
76a1i 11 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦𝑥 = 𝑧)))
83, 4, 7alrimdd 2083 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑦𝑥 = 𝑧)))
92, 8eximd 2085 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧𝑥(𝑥 = 𝑦𝑥 = 𝑧)))
101, 9mpi 20 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑧𝑥(𝑥 = 𝑦𝑥 = 𝑧))
11 df-eu 2474 . 2 (∃!𝑥 𝑥 = 𝑦 ↔ ∃𝑧𝑥(𝑥 = 𝑦𝑥 = 𝑧))
1210, 11sylibr 224 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∃!𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wal 1481  wex 1704  ∃!weu 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator