| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfae1 | Structured version Visualization version GIF version | ||
| Description: Unlike nfae 2316, this specialized theorem avoids ax-11 2034. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-nfae1 | ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aecom 2311 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
| 2 | nfa1 2028 | . 2 ⊢ Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | |
| 3 | 1, 2 | nfxfr 1779 | 1 ⊢ Ⅎ𝑥∀𝑦 𝑦 = 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: wl-nfnae1 33316 |
| Copyright terms: Public domain | W3C validator |