Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-nfnbi Structured version   Visualization version   GIF version

Theorem wl-nfnbi 33314
Description: Being free does not depend on an outside negation in an expression. This theorem is slightly more general than nfn 1784 or nfnd 1785. (Contributed by Wolf Lammen, 5-May-2018.)
Assertion
Ref Expression
wl-nfnbi (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem wl-nfnbi
StepHypRef Expression
1 nfnt 1782 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
2 notnotb 304 . . 3 (𝜑 ↔ ¬ ¬ 𝜑)
3 nfnt 1782 . . 3 (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥 ¬ ¬ 𝜑)
42, 3nfxfrd 1780 . 2 (Ⅎ𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
51, 4impbii 199 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by:  wl-sb8et  33334
  Copyright terms: Public domain W3C validator