| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-nfimf1 | Structured version Visualization version GIF version | ||
| Description: An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim 1825 in dvelimdf 2335 to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018.) |
| Ref | Expression |
|---|---|
| wl-nfimf1 | ⊢ (∀𝑥𝜑 → (Ⅎ𝑥(𝜑 → 𝜓) ↔ Ⅎ𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2028 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | pm5.5 351 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) | |
| 3 | 2 | sps 2055 | . 2 ⊢ (∀𝑥𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) |
| 4 | 1, 3 | nfbidf 2092 | 1 ⊢ (∀𝑥𝜑 → (Ⅎ𝑥(𝜑 → 𝜓) ↔ Ⅎ𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |