| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xornan | Structured version Visualization version GIF version | ||
| Description: XOR implies NAND. (Contributed by BJ, 19-Apr-2019.) |
| Ref | Expression |
|---|---|
| xornan | ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor2 1470 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ((𝜑 ∨ 𝜓) ∧ ¬ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | simprbi 480 | 1 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-xor 1465 |
| This theorem is referenced by: xornan2 1473 mptxor 1694 |
| Copyright terms: Public domain | W3C validator |