| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xornan2 | Structured version Visualization version GIF version | ||
| Description: XOR implies NAND (written with the ⊼ connector). (Contributed by BJ, 19-Apr-2019.) |
| Ref | Expression |
|---|---|
| xornan2 | ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xornan 1472 | . 2 ⊢ ((𝜑 ⊻ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | |
| 2 | df-nan 1448 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 3 | 1, 2 | sylibr 224 | 1 ⊢ ((𝜑 ⊻ 𝜓) → (𝜑 ⊼ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ⊼ wnan 1447 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 df-xor 1465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |