| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xpinintabd | Structured version Visualization version GIF version | ||
| Description: Value of the intersection of cross-product with the intersection of a non-empty class. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| xpinintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| xpinintabd | ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpinintabd.x | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | 1 | inintabd 37885 | 1 ⊢ (𝜑 → ((𝐴 × 𝐵) ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 (𝐴 × 𝐵) ∣ ∃𝑥(𝑤 = ((𝐴 × 𝐵) ∩ 𝑥) ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 {cab 2608 {crab 2916 ∩ cin 3573 𝒫 cpw 4158 ∩ cint 4475 × cxp 5112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-int 4476 |
| This theorem is referenced by: relintab 37889 |
| Copyright terms: Public domain | W3C validator |