Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relintabex Structured version   Visualization version   GIF version

Theorem relintabex 37887
Description: If the intersection of a class is a relation, then the class is non-empty. (Contributed by RP, 12-Aug-2020.)
Assertion
Ref Expression
relintabex (Rel {𝑥𝜑} → ∃𝑥𝜑)

Proof of Theorem relintabex
StepHypRef Expression
1 intnex 4821 . . . 4 {𝑥𝜑} ∈ V ↔ {𝑥𝜑} = V)
2 0nelxp 5143 . . . . . . 7 ¬ ∅ ∈ (V × V)
3 0ex 4790 . . . . . . . 8 ∅ ∈ V
4 eleq1 2689 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V)))
54notbid 308 . . . . . . . 8 (𝑥 = ∅ → (¬ 𝑥 ∈ (V × V) ↔ ¬ ∅ ∈ (V × V)))
63, 5spcev 3300 . . . . . . 7 (¬ ∅ ∈ (V × V) → ∃𝑥 ¬ 𝑥 ∈ (V × V))
72, 6ax-mp 5 . . . . . 6 𝑥 ¬ 𝑥 ∈ (V × V)
8 nss 3663 . . . . . . . 8 (¬ V ⊆ (V × V) ↔ ∃𝑥(𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V × V)))
9 df-rex 2918 . . . . . . . 8 (∃𝑥 ∈ V ¬ 𝑥 ∈ (V × V) ↔ ∃𝑥(𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V × V)))
10 rexv 3220 . . . . . . . 8 (∃𝑥 ∈ V ¬ 𝑥 ∈ (V × V) ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V))
118, 9, 103bitr2i 288 . . . . . . 7 (¬ V ⊆ (V × V) ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V))
12 df-rel 5121 . . . . . . 7 (Rel V ↔ V ⊆ (V × V))
1311, 12xchnxbir 323 . . . . . 6 (¬ Rel V ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V))
147, 13mpbir 221 . . . . 5 ¬ Rel V
15 releq 5201 . . . . 5 ( {𝑥𝜑} = V → (Rel {𝑥𝜑} ↔ Rel V))
1614, 15mtbiri 317 . . . 4 ( {𝑥𝜑} = V → ¬ Rel {𝑥𝜑})
171, 16sylbi 207 . . 3 {𝑥𝜑} ∈ V → ¬ Rel {𝑥𝜑})
1817con4i 113 . 2 (Rel {𝑥𝜑} → {𝑥𝜑} ∈ V)
19 intexab 4822 . 2 (∃𝑥𝜑 {𝑥𝜑} ∈ V)
2018, 19sylibr 224 1 (Rel {𝑥𝜑} → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200  wss 3574  c0 3915   cint 4475   × cxp 5112  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  relintab  37889
  Copyright terms: Public domain W3C validator