| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfinf | Structured version Visualization version GIF version | ||
| Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.) |
| Ref | Expression |
|---|---|
| zfinf | ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-inf 8535 | . 2 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
| 2 | elequ1 1997 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
| 3 | elequ1 1997 | . . . . . . . 8 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | |
| 4 | 3 | anbi1d 741 | . . . . . . 7 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 5 | 4 | exbidv 1850 | . . . . . 6 ⊢ (𝑤 = 𝑦 → (∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 6 | 2, 5 | imbi12d 334 | . . . . 5 ⊢ (𝑤 = 𝑦 → ((𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
| 7 | 6 | cbvalv 2273 | . . . 4 ⊢ (∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| 8 | 7 | anbi2i 730 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ↔ (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
| 9 | 8 | exbii 1774 | . 2 ⊢ (∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑥 → ∃𝑧(𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) ↔ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) |
| 10 | 1, 9 | mpbi 220 | 1 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-11 2034 ax-12 2047 ax-13 2246 ax-inf 8535 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: axinf2 8537 axinfndlem1 9427 |
| Copyright terms: Public domain | W3C validator |