![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axinf2 | Structured version Visualization version GIF version |
Description: A standard version of
Axiom of Infinity, expanded to primitives, derived
from our version of Infinity ax-inf 8535 and Regularity ax-reg 8497.
This theorem should not be referenced in any proof. Instead, use ax-inf2 8538 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.) |
Ref | Expression |
---|---|
axinf2 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7085 | . . 3 ⊢ ∅ ∈ ω | |
2 | peano2 7086 | . . . 4 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
3 | 2 | ax-gen 1722 | . . 3 ⊢ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω) |
4 | zfinf 8536 | . . . . . 6 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
5 | 4 | inf2 8520 | . . . . 5 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
6 | 5 | inf3 8532 | . . . 4 ⊢ ω ∈ V |
7 | eleq2 2690 | . . . . 5 ⊢ (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω)) | |
8 | eleq2 2690 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) | |
9 | eleq2 2690 | . . . . . . 7 ⊢ (𝑥 = ω → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω)) | |
10 | 8, 9 | imbi12d 334 | . . . . . 6 ⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
11 | 10 | albidv 1849 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
12 | 7, 11 | anbi12d 747 | . . . 4 ⊢ (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))) |
13 | 6, 12 | spcev 3300 | . . 3 ⊢ ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
14 | 1, 3, 13 | mp2an 708 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
15 | 0el 3939 | . . . . 5 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
16 | df-rex 2918 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
17 | 15, 16 | bitri 264 | . . . 4 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
18 | sucel 5798 | . . . . . . 7 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) | |
19 | df-rex 2918 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) | |
20 | 18, 19 | bitri 264 | . . . . . 6 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
21 | 20 | imbi2i 326 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
22 | 21 | albii 1747 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
23 | 17, 22 | anbi12i 733 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
24 | 23 | exbii 1774 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
25 | 14, 24 | mpbi 220 | 1 ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 ∅c0 3915 suc csuc 5725 ωcom 7065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf 8535 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |