MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfrep3cl Structured version   Visualization version   GIF version

Theorem zfrep3cl 4778
Description: An inference rule based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.)
Hypotheses
Ref Expression
zfrep3cl.1 𝐴 ∈ V
zfrep3cl.2 (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))
Assertion
Ref Expression
zfrep3cl 𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem zfrep3cl
StepHypRef Expression
1 nfcv 2764 . 2 𝑥𝐴
2 zfrep3cl.1 . 2 𝐴 ∈ V
3 zfrep3cl.2 . 2 (𝑥𝐴 → ∃𝑧𝑦(𝜑𝑦 = 𝑧))
41, 2, 3zfrepclf 4777 1 𝑧𝑦(𝑦𝑧 ↔ ∃𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704  wcel 1990  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator