| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqeqan12d | Unicode version | ||
| Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqeqan12d.1 |
|
| eqeqan12d.2 |
|
| Ref | Expression |
|---|---|
| eqeqan12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeqan12d.1 |
. 2
| |
| 2 | eqeqan12d.2 |
. 2
| |
| 3 | eqeq12 2365 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 463 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-cleq 2346 |
| This theorem is referenced by: eqeqan12rd 2369 adj11 3889 pw1equn 4331 pw1eqadj 4332 eqfnfv2 5393 pw1fnf1o 5855 dflec2 6210 tc11 6228 |
| Copyright terms: Public domain | W3C validator |