| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > pw1equn | Unicode version | ||
| Description: A condition for a unit power class to equal a union. (Contributed by SF, 26-Jan-2015.) |
| Ref | Expression |
|---|---|
| pw1equn.1 |
|
| pw1equn.2 |
|
| Ref | Expression |
|---|---|
| pw1equn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw1 4325 |
. . . 4
| |
| 2 | unieq 3900 |
. . . 4
| |
| 3 | 1, 2 | syl5eqr 2399 |
. . 3
|
| 4 | ssun1 3426 |
. . . . . 6
| |
| 5 | sseq2 3293 |
. . . . . 6
| |
| 6 | 4, 5 | mpbiri 224 |
. . . . 5
|
| 7 | pw1ss1c 4158 |
. . . . 5
| |
| 8 | 6, 7 | syl6ss 3284 |
. . . 4
|
| 9 | eqpw1uni 4330 |
. . . 4
| |
| 10 | 8, 9 | syl 15 |
. . 3
|
| 11 | ssun2 3427 |
. . . . . 6
| |
| 12 | sseq2 3293 |
. . . . . 6
| |
| 13 | 11, 12 | mpbiri 224 |
. . . . 5
|
| 14 | 13, 7 | syl6ss 3284 |
. . . 4
|
| 15 | eqpw1uni 4330 |
. . . 4
| |
| 16 | 14, 15 | syl 15 |
. . 3
|
| 17 | pw1equn.1 |
. . . . 5
| |
| 18 | 17 | uniex 4317 |
. . . 4
|
| 19 | pw1equn.2 |
. . . . 5
| |
| 20 | 19 | uniex 4317 |
. . . 4
|
| 21 | uneq12 3413 |
. . . . . . 7
| |
| 22 | uniun 3910 |
. . . . . . 7
| |
| 23 | 21, 22 | syl6eqr 2403 |
. . . . . 6
|
| 24 | 23 | eqeq2d 2364 |
. . . . 5
|
| 25 | pw1eq 4143 |
. . . . . . 7
| |
| 26 | 25 | eqeq2d 2364 |
. . . . . 6
|
| 27 | 26 | adantr 451 |
. . . . 5
|
| 28 | pw1eq 4143 |
. . . . . . 7
| |
| 29 | 28 | eqeq2d 2364 |
. . . . . 6
|
| 30 | 29 | adantl 452 |
. . . . 5
|
| 31 | 24, 27, 30 | 3anbi123d 1252 |
. . . 4
|
| 32 | 18, 20, 31 | spc2ev 2947 |
. . 3
|
| 33 | 3, 10, 16, 32 | syl3anc 1182 |
. 2
|
| 34 | pw1un 4163 |
. . . 4
| |
| 35 | pw1eq 4143 |
. . . . . 6
| |
| 36 | uneq12 3413 |
. . . . . 6
| |
| 37 | 35, 36 | eqeqan12d 2368 |
. . . . 5
|
| 38 | 37 | 3impb 1147 |
. . . 4
|
| 39 | 34, 38 | mpbiri 224 |
. . 3
|
| 40 | 39 | exlimivv 1635 |
. 2
|
| 41 | 33, 40 | impbii 180 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-typlower 4086 ax-sn 4087 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-imak 4189 df-p6 4191 df-sik 4192 df-ssetk 4193 |
| This theorem is referenced by: taddc 6229 letc 6231 |
| Copyright terms: Public domain | W3C validator |