![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > 1b | Unicode version |
Description: Identity law. |
Ref | Expression |
---|---|
1b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfb 94 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ancom 74 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ancom 74 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-f 42 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
5 | 4 | ax-r1 35 |
. . . . . . 7
![]() ![]() ![]() ![]() |
6 | 5 | lan 77 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 3, 6 | ax-r2 36 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2, 7 | 2or 72 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | an1 106 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | an0 108 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | 2or 72 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 11 | ax-r2 36 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | or0 102 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | ax-r2 36 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | ax-r2 36 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
This theorem is referenced by: wr3 198 woml6 436 woml7 437 r3b 442 |
Copyright terms: Public domain | W3C validator |