| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > 4oadist | Unicode version | ||
| Description: OA Distributive law. This is equivalent to the 6-variable OA law, as shown by theorem d6oa 997. |
| Ref | Expression |
|---|---|
| 4oa.1 |
|
| 4oa.2 |
|
| 4oadist.1 |
|
| 4oadist.2 |
|
| 4oadist.3 |
|
| 4oadist.4 |
|
| Ref | Expression |
|---|---|
| 4oadist |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4oadist.2 |
. . . . . . . . . 10
| |
| 2 | 4oadist.3 |
. . . . . . . . . 10
| |
| 3 | 1, 2 | le2or 168 |
. . . . . . . . 9
|
| 4 | oridm 110 |
. . . . . . . . 9
| |
| 5 | 3, 4 | lbtr 139 |
. . . . . . . 8
|
| 6 | 5 | lelan 167 |
. . . . . . 7
|
| 7 | 6 | df2le2 136 |
. . . . . 6
|
| 8 | 7 | ax-r1 35 |
. . . . 5
|
| 9 | 4oa.2 |
. . . . . . . . 9
| |
| 10 | or32 82 |
. . . . . . . . 9
| |
| 11 | 9, 10 | ax-r2 36 |
. . . . . . . 8
|
| 12 | 11 | lan 77 |
. . . . . . 7
|
| 13 | 4oa.1 |
. . . . . . . 8
| |
| 14 | leo 158 |
. . . . . . . . 9
| |
| 15 | 11 | ax-r1 35 |
. . . . . . . . 9
|
| 16 | 14, 15 | lbtr 139 |
. . . . . . . 8
|
| 17 | 4oadist.1 |
. . . . . . . 8
| |
| 18 | 13, 9, 16, 17 | 4oagen1b 1043 |
. . . . . . 7
|
| 19 | 12, 18 | ax-r2 36 |
. . . . . 6
|
| 20 | 19 | lan 77 |
. . . . 5
|
| 21 | 8, 20 | ax-r2 36 |
. . . 4
|
| 22 | lear 161 |
. . . . 5
| |
| 23 | 4oadist.4 |
. . . . . . . . 9
| |
| 24 | 23 | df2le2 136 |
. . . . . . . 8
|
| 25 | 24 | ax-r1 35 |
. . . . . . 7
|
| 26 | an32 83 |
. . . . . . 7
| |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
|
| 28 | lea 160 |
. . . . . 6
| |
| 29 | 27, 28 | bltr 138 |
. . . . 5
|
| 30 | 22, 29 | letr 137 |
. . . 4
|
| 31 | 21, 30 | bltr 138 |
. . 3
|
| 32 | leor 159 |
. . 3
| |
| 33 | 31, 32 | letr 137 |
. 2
|
| 34 | ledi 174 |
. 2
| |
| 35 | 33, 34 | lebi 145 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 ax-4oa 1033 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |