| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > bi3 | Unicode version | ||
| Description: Chained biconditional. |
| Ref | Expression |
|---|---|
| bi3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfb 94 |
. . 3
| |
| 2 | u12lembi 726 |
. . . 4
| |
| 3 | 2 | ax-r1 35 |
. . 3
|
| 4 | 1, 3 | 2an 79 |
. 2
|
| 5 | df-i1 44 |
. . . . . 6
| |
| 6 | 5 | lan 77 |
. . . . 5
|
| 7 | lear 161 |
. . . . . . . 8
| |
| 8 | leo 158 |
. . . . . . . 8
| |
| 9 | 7, 8 | letr 137 |
. . . . . . 7
|
| 10 | 9 | lecom 180 |
. . . . . 6
|
| 11 | coman1 185 |
. . . . . . . 8
| |
| 12 | 11 | comcom7 460 |
. . . . . . 7
|
| 13 | coman2 186 |
. . . . . . . 8
| |
| 14 | 13 | comcom7 460 |
. . . . . . 7
|
| 15 | 12, 14 | com2an 484 |
. . . . . 6
|
| 16 | 10, 15 | fh2rc 480 |
. . . . 5
|
| 17 | comanr2 465 |
. . . . . . . . 9
| |
| 18 | 17 | comcom3 454 |
. . . . . . . 8
|
| 19 | comanr1 464 |
. . . . . . . . 9
| |
| 20 | 19 | comcom3 454 |
. . . . . . . 8
|
| 21 | 18, 20 | fh2 470 |
. . . . . . 7
|
| 22 | anass 76 |
. . . . . . . . 9
| |
| 23 | dff 101 |
. . . . . . . . . . 11
| |
| 24 | 23 | lan 77 |
. . . . . . . . . 10
|
| 25 | 24 | ax-r1 35 |
. . . . . . . . 9
|
| 26 | an0 108 |
. . . . . . . . 9
| |
| 27 | 22, 25, 26 | 3tr 65 |
. . . . . . . 8
|
| 28 | anass 76 |
. . . . . . . . . 10
| |
| 29 | 28 | ax-r1 35 |
. . . . . . . . 9
|
| 30 | anass 76 |
. . . . . . . . . . 11
| |
| 31 | anidm 111 |
. . . . . . . . . . . 12
| |
| 32 | 31 | lan 77 |
. . . . . . . . . . 11
|
| 33 | 30, 32 | ax-r2 36 |
. . . . . . . . . 10
|
| 34 | 33 | ran 78 |
. . . . . . . . 9
|
| 35 | 29, 34 | ax-r2 36 |
. . . . . . . 8
|
| 36 | 27, 35 | 2or 72 |
. . . . . . 7
|
| 37 | or0r 103 |
. . . . . . 7
| |
| 38 | 21, 36, 37 | 3tr 65 |
. . . . . 6
|
| 39 | 13 | comcom 453 |
. . . . . . . 8
|
| 40 | 39, 20 | fh2 470 |
. . . . . . 7
|
| 41 | anass 76 |
. . . . . . . . 9
| |
| 42 | anidm 111 |
. . . . . . . . . 10
| |
| 43 | 42 | lan 77 |
. . . . . . . . 9
|
| 44 | 41, 43 | ax-r2 36 |
. . . . . . . 8
|
| 45 | an4 86 |
. . . . . . . . 9
| |
| 46 | anass 76 |
. . . . . . . . 9
| |
| 47 | 23 | ran 78 |
. . . . . . . . . . . . 13
|
| 48 | 47 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 49 | anass 76 |
. . . . . . . . . . . 12
| |
| 50 | an0r 109 |
. . . . . . . . . . . 12
| |
| 51 | 48, 49, 50 | 3tr2 64 |
. . . . . . . . . . 11
|
| 52 | 51 | lan 77 |
. . . . . . . . . 10
|
| 53 | an0 108 |
. . . . . . . . . 10
| |
| 54 | 52, 53 | ax-r2 36 |
. . . . . . . . 9
|
| 55 | 45, 46, 54 | 3tr 65 |
. . . . . . . 8
|
| 56 | 44, 55 | 2or 72 |
. . . . . . 7
|
| 57 | or0 102 |
. . . . . . 7
| |
| 58 | 40, 56, 57 | 3tr 65 |
. . . . . 6
|
| 59 | 38, 58 | 2or 72 |
. . . . 5
|
| 60 | 6, 16, 59 | 3tr 65 |
. . . 4
|
| 61 | 60 | ran 78 |
. . 3
|
| 62 | anass 76 |
. . 3
| |
| 63 | lear 161 |
. . . . . . . 8
| |
| 64 | leo 158 |
. . . . . . . 8
| |
| 65 | 63, 64 | letr 137 |
. . . . . . 7
|
| 66 | an32 83 |
. . . . . . 7
| |
| 67 | df-i2 45 |
. . . . . . 7
| |
| 68 | 65, 66, 67 | le3tr1 140 |
. . . . . 6
|
| 69 | 68 | lecom 180 |
. . . . 5
|
| 70 | anass 76 |
. . . . . . . . . 10
| |
| 71 | lea 160 |
. . . . . . . . . 10
| |
| 72 | 70, 71 | bltr 138 |
. . . . . . . . 9
|
| 73 | leo 158 |
. . . . . . . . 9
| |
| 74 | 72, 73 | letr 137 |
. . . . . . . 8
|
| 75 | oran 87 |
. . . . . . . 8
| |
| 76 | 74, 75 | lbtr 139 |
. . . . . . 7
|
| 77 | 76 | lecom 180 |
. . . . . 6
|
| 78 | 77 | comcom7 460 |
. . . . 5
|
| 79 | 69, 78 | fh2r 474 |
. . . 4
|
| 80 | anass 76 |
. . . . . 6
| |
| 81 | an4 86 |
. . . . . 6
| |
| 82 | ancom 74 |
. . . . . . . . 9
| |
| 83 | u2lemab 611 |
. . . . . . . . 9
| |
| 84 | 82, 83 | ax-r2 36 |
. . . . . . . 8
|
| 85 | 84 | lan 77 |
. . . . . . 7
|
| 86 | an32 83 |
. . . . . . 7
| |
| 87 | 85, 86 | ax-r2 36 |
. . . . . 6
|
| 88 | 80, 81, 87 | 3tr 65 |
. . . . 5
|
| 89 | anass 76 |
. . . . . 6
| |
| 90 | ancom 74 |
. . . . . . . 8
| |
| 91 | u2lemanb 616 |
. . . . . . . 8
| |
| 92 | 90, 91 | ax-r2 36 |
. . . . . . 7
|
| 93 | 92 | lan 77 |
. . . . . 6
|
| 94 | an12 81 |
. . . . . . 7
| |
| 95 | ancom 74 |
. . . . . . 7
| |
| 96 | 94, 95 | ax-r2 36 |
. . . . . 6
|
| 97 | 89, 93, 96 | 3tr 65 |
. . . . 5
|
| 98 | 88, 97 | 2or 72 |
. . . 4
|
| 99 | 79, 98 | ax-r2 36 |
. . 3
|
| 100 | 61, 62, 99 | 3tr2 64 |
. 2
|
| 101 | 4, 100 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: bi4 840 mlaconj4 844 |
| Copyright terms: Public domain | W3C validator |