| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > dfi3b | Unicode version | ||
| Description: Alternate Kalmbach conditional. |
| Ref | Expression |
|---|---|
| dfi3b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 |
. . 3
| |
| 2 | ax-a3 32 |
. . . 4
| |
| 3 | oridm 110 |
. . . . . . 7
| |
| 4 | 3 | ax-r1 35 |
. . . . . 6
|
| 5 | anidm 111 |
. . . . . . . . . 10
| |
| 6 | 5 | ax-r1 35 |
. . . . . . . . 9
|
| 7 | 6 | ran 78 |
. . . . . . . 8
|
| 8 | anass 76 |
. . . . . . . 8
| |
| 9 | 7, 8 | ax-r2 36 |
. . . . . . 7
|
| 10 | anidm 111 |
. . . . . . . . . 10
| |
| 11 | 10 | ax-r1 35 |
. . . . . . . . 9
|
| 12 | 11 | lan 77 |
. . . . . . . 8
|
| 13 | an12 81 |
. . . . . . . 8
| |
| 14 | 12, 13 | ax-r2 36 |
. . . . . . 7
|
| 15 | 9, 14 | 2or 72 |
. . . . . 6
|
| 16 | 4, 15 | ax-r2 36 |
. . . . 5
|
| 17 | lea 160 |
. . . . . . . . . . 11
| |
| 18 | leo 158 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | letr 137 |
. . . . . . . . . 10
|
| 20 | 19 | df2le2 136 |
. . . . . . . . 9
|
| 21 | 20 | ax-r1 35 |
. . . . . . . 8
|
| 22 | ancom 74 |
. . . . . . . 8
| |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . 7
|
| 24 | ancom 74 |
. . . . . . 7
| |
| 25 | 23, 24 | 2or 72 |
. . . . . 6
|
| 26 | ax-a2 31 |
. . . . . 6
| |
| 27 | 25, 26 | ax-r2 36 |
. . . . 5
|
| 28 | 16, 27 | 2or 72 |
. . . 4
|
| 29 | 2, 28 | ax-r2 36 |
. . 3
|
| 30 | comor1 461 |
. . . . . 6
| |
| 31 | 30 | comcom7 460 |
. . . . 5
|
| 32 | comor2 462 |
. . . . . . 7
| |
| 33 | 32 | comcom2 183 |
. . . . . 6
|
| 34 | 30, 33 | com2an 484 |
. . . . 5
|
| 35 | 31, 34 | fh1 469 |
. . . 4
|
| 36 | coman1 185 |
. . . . 5
| |
| 37 | coman2 186 |
. . . . 5
| |
| 38 | 36, 37 | fh1r 473 |
. . . 4
|
| 39 | 35, 38 | 2or 72 |
. . 3
|
| 40 | 1, 29, 39 | 3tr1 63 |
. 2
|
| 41 | df-i3 46 |
. 2
| |
| 42 | 31, 34 | com2or 483 |
. . 3
|
| 43 | 30, 32 | com2an 484 |
. . 3
|
| 44 | 42, 43 | fh1 469 |
. 2
|
| 45 | 40, 41, 44 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: dfi4b 500 u3lem15 795 negantlem9 859 |
| Copyright terms: Public domain | W3C validator |