| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > dp23 | Unicode version | ||
| Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (2)=>(3) |
| Ref | Expression |
|---|---|
| dp23.1 |
c0 |
| dp23.2 |
c1 |
| dp23.3 |
c2 |
| dp23.4 |
|
| Ref | Expression |
|---|---|
| dp23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dp23.1 |
. . 3
c0 | |
| 2 | dp23.2 |
. . 3
c1 | |
| 3 | dp23.3 |
. . 3
c2 | |
| 4 | dp23.4 |
. . 3
| |
| 5 | 1, 2, 3, 4 | dp32 1194 |
. 2
|
| 6 | lea 160 |
. . 3
| |
| 7 | 6 | leror 152 |
. 2
|
| 8 | 5, 7 | letr 137 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 ax-arg 1151 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |