QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  dp32 Unicode version

Theorem dp32 1194
Description: Part of theorem from Alan Day and Doug Pickering, "A note on the Arguesian lattice identity," Studia Sci. Math. Hungar. 19:303-305 (1982). (3)=>(2)
Hypotheses
Ref Expression
dp32.1 c0 = ((a1 v a2) ^ (b1 v b2))
dp32.2 c1 = ((a0 v a2) ^ (b0 v b2))
dp32.3 c2 = ((a0 v a1) ^ (b0 v b1))
dp32.4 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
Assertion
Ref Expression
dp32 p =< ((a0 ^ (a1 v (c2 ^ (c0 v c1)))) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))

Proof of Theorem dp32
StepHypRef Expression
1 dp32.1 . . . 4 c0 = ((a1 v a2) ^ (b1 v b2))
2 dp32.2 . . . 4 c1 = ((a0 v a2) ^ (b0 v b2))
3 dp32.3 . . . 4 c2 = ((a0 v a1) ^ (b0 v b1))
4 dp32.4 . . . 4 p = (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2))
51, 2, 3, 4dp53 1168 . . 3 p =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
6 ancom 74 . . . . 5 ((a1 v a2) ^ (b1 v b2)) = ((b1 v b2) ^ (a1 v a2))
71, 6tr 62 . . . 4 c0 = ((b1 v b2) ^ (a1 v a2))
8 ancom 74 . . . . 5 ((a0 v a2) ^ (b0 v b2)) = ((b0 v b2) ^ (a0 v a2))
92, 8tr 62 . . . 4 c1 = ((b0 v b2) ^ (a0 v a2))
10 ancom 74 . . . . 5 ((a0 v a1) ^ (b0 v b1)) = ((b0 v b1) ^ (a0 v a1))
113, 10tr 62 . . . 4 c2 = ((b0 v b1) ^ (a0 v a1))
12 orcom 73 . . . . . . 7 (a0 v b0) = (b0 v a0)
13 orcom 73 . . . . . . 7 (a1 v b1) = (b1 v a1)
1412, 132an 79 . . . . . 6 ((a0 v b0) ^ (a1 v b1)) = ((b0 v a0) ^ (b1 v a1))
15 orcom 73 . . . . . 6 (a2 v b2) = (b2 v a2)
1614, 152an 79 . . . . 5 (((a0 v b0) ^ (a1 v b1)) ^ (a2 v b2)) = (((b0 v a0) ^ (b1 v a1)) ^ (b2 v a2))
174, 16tr 62 . . . 4 p = (((b0 v a0) ^ (b1 v a1)) ^ (b2 v a2))
187, 9, 11, 17dp53 1168 . . 3 p =< (b0 v (a0 ^ (a1 v (c2 ^ (c0 v c1)))))
195, 18ler2an 173 . 2 p =< ((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ (b0 v (a0 ^ (a1 v (c2 ^ (c0 v c1))))))
20 leao1 162 . . . 4 (a0 ^ (a1 v (c2 ^ (c0 v c1)))) =< (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
2120mldual2i 1125 . . 3 ((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ (b0 v (a0 ^ (a1 v (c2 ^ (c0 v c1)))))) = (((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ b0) v (a0 ^ (a1 v (c2 ^ (c0 v c1)))))
22 ancom 74 . . . . 5 ((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ b0) = (b0 ^ (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))))
23 mldual 1122 . . . . 5 (b0 ^ (a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))) = ((b0 ^ a0) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
24 leao2 163 . . . . . . . . . . 11 (b0 ^ a0) =< (a0 v a1)
25 leao1 162 . . . . . . . . . . 11 (b0 ^ a0) =< (b0 v b1)
2624, 25ler2an 173 . . . . . . . . . 10 (b0 ^ a0) =< ((a0 v a1) ^ (b0 v b1))
273cm 61 . . . . . . . . . 10 ((a0 v a1) ^ (b0 v b1)) = c2
2826, 27lbtr 139 . . . . . . . . 9 (b0 ^ a0) =< c2
29 leao2 163 . . . . . . . . . . . 12 (b0 ^ a0) =< (a0 v a2)
30 leao1 162 . . . . . . . . . . . 12 (b0 ^ a0) =< (b0 v b2)
3129, 30ler2an 173 . . . . . . . . . . 11 (b0 ^ a0) =< ((a0 v a2) ^ (b0 v b2))
322cm 61 . . . . . . . . . . 11 ((a0 v a2) ^ (b0 v b2)) = c1
3331, 32lbtr 139 . . . . . . . . . 10 (b0 ^ a0) =< c1
3433lerr 150 . . . . . . . . 9 (b0 ^ a0) =< (c0 v c1)
3528, 34ler2an 173 . . . . . . . 8 (b0 ^ a0) =< (c2 ^ (c0 v c1))
3635lerr 150 . . . . . . 7 (b0 ^ a0) =< (b1 v (c2 ^ (c0 v c1)))
3736ml2i 1123 . . . . . 6 ((b0 ^ a0) v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) = (((b0 ^ a0) v b0) ^ (b1 v (c2 ^ (c0 v c1))))
38 lea 160 . . . . . . . 8 (b0 ^ a0) =< b0
3938df-le2 131 . . . . . . 7 ((b0 ^ a0) v b0) = b0
4039ran 78 . . . . . 6 (((b0 ^ a0) v b0) ^ (b1 v (c2 ^ (c0 v c1)))) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
4137, 40tr 62 . . . . 5 ((b0 ^ a0) v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
4222, 23, 413tr 65 . . . 4 ((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ b0) = (b0 ^ (b1 v (c2 ^ (c0 v c1))))
4342ror 71 . . 3 (((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ b0) v (a0 ^ (a1 v (c2 ^ (c0 v c1))))) = ((b0 ^ (b1 v (c2 ^ (c0 v c1)))) v (a0 ^ (a1 v (c2 ^ (c0 v c1)))))
44 orcom 73 . . 3 ((b0 ^ (b1 v (c2 ^ (c0 v c1)))) v (a0 ^ (a1 v (c2 ^ (c0 v c1))))) = ((a0 ^ (a1 v (c2 ^ (c0 v c1)))) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
4521, 43, 443tr 65 . 2 ((a0 v (b0 ^ (b1 v (c2 ^ (c0 v c1))))) ^ (b0 v (a0 ^ (a1 v (c2 ^ (c0 v c1)))))) = ((a0 ^ (a1 v (c2 ^ (c0 v c1)))) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
4619, 45lbtr 139 1 p =< ((a0 ^ (a1 v (c2 ^ (c0 v c1)))) v (b0 ^ (b1 v (c2 ^ (c0 v c1)))))
Colors of variables: term
Syntax hints:   = wb 1   =< wle 2   v wo 6   ^ wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1120  ax-arg 1151
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  dp23  1195
  Copyright terms: Public domain W3C validator