| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > dp35lema | Unicode version | ||
| Description: Part of proof (3)=>(5) in Day/Pickering 1982. |
| Ref | Expression |
|---|---|
| dp35lem.1 |
c0 |
| dp35lem.2 |
c1 |
| dp35lem.3 |
c2 |
| dp35lem.4 |
p0 |
| dp35lem.5 |
|
| Ref | Expression |
|---|---|
| dp35lema |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 |
. 2
b1 | |
| 2 | dp35lem.1 |
. . . 4
c0 | |
| 3 | dp35lem.2 |
. . . 4
c1 | |
| 4 | dp35lem.3 |
. . . 4
c2 | |
| 5 | dp35lem.4 |
. . . 4
p0 | |
| 6 | dp35lem.5 |
. . . 4
| |
| 7 | 2, 3, 4, 5, 6 | dp35lembb 1175 |
. . 3
|
| 8 | lear 161 |
. . 3
| |
| 9 | 7, 8 | letr 137 |
. 2
|
| 10 | 1, 9 | lel2or 170 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 ax-arg 1151 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: dp35lem0 1177 |
| Copyright terms: Public domain | W3C validator |