Proof of Theorem dp35lembb
Step | Hyp | Ref
| Expression |
1 | | dp35lem.1 |
. . 3
c0  a1 a2 b1 b2  |
2 | | dp35lem.2 |
. . 3
c1  a0 a2 b0 b2  |
3 | | dp35lem.3 |
. . 3
c2  a0 a1 b0 b1  |
4 | | dp35lem.4 |
. . 3
p0  a1 b1 a2 b2  |
5 | | dp35lem.5 |
. . 3
  a0 b0 a1 b1 a2
b2  |
6 | 1, 2, 3, 4, 5 | dp35lemd 1172 |
. 2
b0 a0 p0 b0   a0
b0
b1 c2 c0 c1    |
7 | 1, 2, 3, 4, 5 | dp35lemc 1173 |
. . 3
b0   a0
b0
b1 c2 c0 c1   b0 b1 c2 c0
c1    |
8 | 1, 2, 3, 4, 5 | dp35lemb 1174 |
. . 3
b0 b1 c2 c0
c1   b0 b1  a0 a1
c0 c1    |
9 | 7, 8 | tr 62 |
. 2
b0   a0
b0
b1 c2 c0 c1   b0 b1  a0 a1
c0 c1    |
10 | 6, 9 | lbtr 139 |
1
b0 a0 p0 b0 b1  a0 a1
c0 c1    |