Proof of Theorem dp41lemd
Step | Hyp | Ref
| Expression |
1 | | mldual 1122 |
. 2
c2  a0 b1 c2 c0 c1    c2 a0 b1 c2
c0 c1   |
2 | | ancom 74 |
. . 3
c2 c0 c1  c0 c1
c2 |
3 | 2 | lor 70 |
. 2
 c2
a0 b1 c2 c0 c1   c2 a0 b1  c0 c1
c2  |
4 | | lea 160 |
. . . 4
c2 a0 b1 c2 |
5 | 4 | ml2i 1123 |
. . 3
 c2
a0 b1  c0 c1 c2   c2 a0 b1 c0
c1 c2 |
6 | | ancom 74 |
. . 3
  c2 a0 b1 c0
c1 c2 c2  c2 a0 b1 c0
c1   |
7 | | ax-a2 31 |
. . . 4
 c2
a0 b1 c0 c1  c0 c1 c2 a0 b1   |
8 | 7 | lan 77 |
. . 3
c2  c2 a0 b1 c0
c1  c2  c0 c1
c2 a0 b1    |
9 | 5, 6, 8 | 3tr 65 |
. 2
 c2
a0 b1  c0 c1 c2 c2
 c0 c1
c2 a0 b1    |
10 | 1, 3, 9 | 3tr 65 |
1
c2  a0 b1 c2 c0 c1   c2  c0 c1 c2 a0 b1    |