| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mldual | Unicode version | ||
| Description: Dual of modular law. |
| Ref | Expression |
|---|---|
| mldual |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor3 90 |
. . . . . . 7
| |
| 2 | 1 | cm 61 |
. . . . . 6
|
| 3 | oran3 93 |
. . . . . . . 8
| |
| 4 | 3 | lan 77 |
. . . . . . 7
|
| 5 | 4 | ax-r1 35 |
. . . . . 6
|
| 6 | 2, 5 | tr 62 |
. . . . 5
|
| 7 | 6 | lor 70 |
. . . 4
|
| 8 | ml 1121 |
. . . 4
| |
| 9 | oran3 93 |
. . . . 5
| |
| 10 | 9, 3 | 2an 79 |
. . . 4
|
| 11 | 7, 8, 10 | 3tr 65 |
. . 3
|
| 12 | oran3 93 |
. . 3
| |
| 13 | anor3 90 |
. . 3
| |
| 14 | 11, 12, 13 | 3tr2 64 |
. 2
|
| 15 | 14 | con1 66 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1120 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: mldual2i 1125 vneulem13 1141 vneulemexp 1146 dp41lemd 1184 dp41leme 1185 dp32 1194 xdp41 1196 xxdp41 1199 xdp45lem 1202 xdp43lem 1203 xdp45 1204 xdp43 1205 3dp43 1206 |
| Copyright terms: Public domain | W3C validator |