Proof of Theorem dp53lemd
Step | Hyp | Ref
| Expression |
1 | | lea 160 |
. . 3
b0 a0 p0 b0 |
2 | | leor 159 |
. . . 4
b0 a0 p0 b1 b0 a0 p0   |
3 | | dp53lem.1 |
. . . . 5
c0  a1 a2 b1 b2  |
4 | | dp53lem.2 |
. . . . 5
c1  a0 a2 b0 b2  |
5 | | dp53lem.3 |
. . . . 5
c2  a0 a1 b0 b1  |
6 | | dp53lem.4 |
. . . . 5
p0  a1 b1 a2 b2  |
7 | | dp53lem.5 |
. . . . 5
  a0 b0 a1 b1 a2
b2  |
8 | 3, 4, 5, 6, 7 | dp53lema 1161 |
. . . 4
b1 b0 a0 p0  b1  a0 a1
c0 c1   |
9 | 2, 8 | letr 137 |
. . 3
b0 a0 p0 b1  a0 a1 c0 c1   |
10 | 1, 9 | ler2an 173 |
. 2
b0 a0 p0 b0 b1  a0 a1
c0 c1    |
11 | 3, 4, 5, 6, 7 | dp53lemc 1163 |
. . . 4
b0   a0
b0
b1 c2 c0 c1   b0 b1 c2 c0
c1    |
12 | 3, 4, 5, 6, 7 | dp53lemb 1162 |
. . . 4
b0 b1 c2 c0
c1   b0 b1  a0 a1
c0 c1    |
13 | 11, 12 | tr 62 |
. . 3
b0   a0
b0
b1 c2 c0 c1   b0 b1  a0 a1
c0 c1    |
14 | 13 | cm 61 |
. 2
b0 b1  a0 a1
c0 c1   b0
  a0 b0 b1
c2 c0 c1    |
15 | 10, 14 | lbtr 139 |
1
b0 a0 p0 b0   a0
b0
b1 c2 c0 c1    |