Proof of Theorem dp53leme
Step | Hyp | Ref
| Expression |
1 | | dp53lem.1 |
. . 3
c0  a1 a2 b1 b2  |
2 | | dp53lem.2 |
. . 3
c1  a0 a2 b0 b2  |
3 | | dp53lem.3 |
. . 3
c2  a0 a1 b0 b1  |
4 | | dp53lem.4 |
. . 3
p0  a1 b1 a2 b2  |
5 | | dp53lem.5 |
. . 3
  a0 b0 a1 b1 a2
b2  |
6 | 1, 2, 3, 4, 5 | dp53lemd 1164 |
. 2
b0 a0 p0 b0   a0
b0
b1 c2 c0 c1    |
7 | | orass 75 |
. . . . . 6
  a0 b0
b1 c2 c0 c1   a0 b0 b1 c2 c0
c1    |
8 | | orcom 73 |
. . . . . 6
 a0
b0
b1 c2 c0 c1    b1 c2 c0 c1  a0 b0  |
9 | 7, 8 | tr 62 |
. . . . 5
  a0 b0
b1 c2 c0 c1   b1 c2 c0 c1  a0 b0  |
10 | 9 | lan 77 |
. . . 4
b0   a0
b0
b1 c2 c0 c1   b0  b1 c2 c0 c1  a0 b0   |
11 | | lear 161 |
. . . . 5
a0 b0 b0 |
12 | 11 | mldual2i 1125 |
. . . 4
b0  b1 c2 c0 c1  a0 b0   b0 b1 c2 c0
c1   a0 b0  |
13 | | orcom 73 |
. . . 4
 b0
b1 c2 c0 c1   a0 b0  a0 b0 b0 b1 c2
c0 c1     |
14 | 10, 12, 13 | 3tr 65 |
. . 3
b0   a0
b0
b1 c2 c0 c1    a0 b0 b0 b1 c2
c0 c1     |
15 | | lea 160 |
. . . 4
a0 b0 a0 |
16 | 15 | leror 152 |
. . 3
 a0
b0
b0 b1 c2 c0
c1    a0 b0 b1 c2
c0 c1     |
17 | 14, 16 | bltr 138 |
. 2
b0   a0
b0
b1 c2 c0 c1   a0 b0 b1 c2
c0 c1     |
18 | 6, 17 | letr 137 |
1
b0 a0 p0 a0 b0 b1 c2
c0 c1     |