| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mh | Unicode version | ||
| Description: Marsden-Herman distributive law. Lemma 7.2 of Kalmbach, p. 91. |
| Ref | Expression |
|---|---|
| mh.1 |
|
| mh.2 |
|
| mh.3 |
|
| mh.4 |
|
| Ref | Expression |
|---|---|
| mh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leao1 162 |
. . . . . 6
| |
| 2 | leao2 163 |
. . . . . 6
| |
| 3 | 1, 2 | ler2an 173 |
. . . . 5
|
| 4 | leao1 162 |
. . . . . 6
| |
| 5 | leao4 165 |
. . . . . 6
| |
| 6 | 4, 5 | ler2an 173 |
. . . . 5
|
| 7 | 3, 6 | lel2or 170 |
. . . 4
|
| 8 | leao3 164 |
. . . . . 6
| |
| 9 | leao2 163 |
. . . . . 6
| |
| 10 | 8, 9 | ler2an 173 |
. . . . 5
|
| 11 | leao3 164 |
. . . . . 6
| |
| 12 | leao4 165 |
. . . . . 6
| |
| 13 | 11, 12 | ler2an 173 |
. . . . 5
|
| 14 | 10, 13 | lel2or 170 |
. . . 4
|
| 15 | 7, 14 | lel2or 170 |
. . 3
|
| 16 | anass 76 |
. . . . . . 7
| |
| 17 | 16 | ax-r1 35 |
. . . . . 6
|
| 18 | an4 86 |
. . . . . . . . 9
| |
| 19 | mh.1 |
. . . . . . . . . 10
| |
| 20 | mh.2 |
. . . . . . . . . 10
| |
| 21 | mh.3 |
. . . . . . . . . 10
| |
| 22 | mh.4 |
. . . . . . . . . 10
| |
| 23 | 19, 20, 21, 22 | mhlem2 878 |
. . . . . . . . 9
|
| 24 | 18, 23 | ax-r2 36 |
. . . . . . . 8
|
| 25 | lea 160 |
. . . . . . . . . . 11
| |
| 26 | lea 160 |
. . . . . . . . . . 11
| |
| 27 | 25, 26 | le2an 169 |
. . . . . . . . . 10
|
| 28 | leo 158 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | letr 137 |
. . . . . . . . 9
|
| 30 | lea 160 |
. . . . . . . . . . 11
| |
| 31 | lea 160 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | le2an 169 |
. . . . . . . . . 10
|
| 33 | leor 159 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | letr 137 |
. . . . . . . . 9
|
| 35 | 29, 34 | lel2or 170 |
. . . . . . . 8
|
| 36 | 24, 35 | bltr 138 |
. . . . . . 7
|
| 37 | 36 | leran 153 |
. . . . . 6
|
| 38 | 17, 37 | bltr 138 |
. . . . 5
|
| 39 | anor3 90 |
. . . . . . . 8
| |
| 40 | 39 | ax-r1 35 |
. . . . . . 7
|
| 41 | ax-a2 31 |
. . . . . . . . 9
| |
| 42 | or12 80 |
. . . . . . . . . . . 12
| |
| 43 | ax-a3 32 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 45 | ax-a2 31 |
. . . . . . . . . . . 12
| |
| 46 | 42, 44, 45 | 3tr 65 |
. . . . . . . . . . 11
|
| 47 | 46 | lor 70 |
. . . . . . . . . 10
|
| 48 | ax-a3 32 |
. . . . . . . . . 10
| |
| 49 | ax-a3 32 |
. . . . . . . . . 10
| |
| 50 | 47, 48, 49 | 3tr1 63 |
. . . . . . . . 9
|
| 51 | 41, 50 | ax-r2 36 |
. . . . . . . 8
|
| 52 | 51 | ax-r4 37 |
. . . . . . 7
|
| 53 | oran3 93 |
. . . . . . . . . 10
| |
| 54 | oran3 93 |
. . . . . . . . . 10
| |
| 55 | 53, 54 | 2an 79 |
. . . . . . . . 9
|
| 56 | anor3 90 |
. . . . . . . . 9
| |
| 57 | 55, 56 | ax-r2 36 |
. . . . . . . 8
|
| 58 | 57 | ran 78 |
. . . . . . 7
|
| 59 | 40, 52, 58 | 3tr1 63 |
. . . . . 6
|
| 60 | 59 | lan 77 |
. . . . 5
|
| 61 | dff 101 |
. . . . 5
| |
| 62 | 38, 60, 61 | le3tr1 140 |
. . . 4
|
| 63 | le0 147 |
. . . 4
| |
| 64 | 62, 63 | lebi 145 |
. . 3
|
| 65 | 15, 64 | oml3 452 |
. 2
|
| 66 | 65 | ax-r1 35 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: mh2 884 mlaconjo 886 |
| Copyright terms: Public domain | W3C validator |