| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa23 | Unicode version | ||
| Description: Derivation of OA from Godowski/Greechie Eq. II. |
| Ref | Expression |
|---|---|
| oa23.1 |
|
| Ref | Expression |
|---|---|
| oa23 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 |
. . . . . . 7
| |
| 2 | 1 | ax-r4 37 |
. . . . . 6
|
| 3 | ancom 74 |
. . . . . 6
| |
| 4 | 2, 3 | 2or 72 |
. . . . 5
|
| 5 | 4 | lan 77 |
. . . 4
|
| 6 | 5 | ax-r5 38 |
. . 3
|
| 7 | ax-a2 31 |
. . 3
| |
| 8 | ax-a3 32 |
. . . . . . . . . 10
| |
| 9 | 8 | ax-r1 35 |
. . . . . . . . 9
|
| 10 | oridm 110 |
. . . . . . . . . 10
| |
| 11 | 10 | ax-r5 38 |
. . . . . . . . 9
|
| 12 | 9, 11 | ax-r2 36 |
. . . . . . . 8
|
| 13 | u2lemonb 636 |
. . . . . . . 8
| |
| 14 | 12, 13 | 2an 79 |
. . . . . . 7
|
| 15 | 14 | ax-r1 35 |
. . . . . 6
|
| 16 | an1 106 |
. . . . . . 7
| |
| 17 | 16 | ax-r1 35 |
. . . . . 6
|
| 18 | comorr 184 |
. . . . . . 7
| |
| 19 | u2lemc1 681 |
. . . . . . . . 9
| |
| 20 | 19 | comcom 453 |
. . . . . . . 8
|
| 21 | 20 | comcom2 183 |
. . . . . . 7
|
| 22 | 18, 21 | fh3 471 |
. . . . . 6
|
| 23 | 15, 17, 22 | 3tr1 63 |
. . . . 5
|
| 24 | oa23.1 |
. . . . . . . . 9
| |
| 25 | lea 160 |
. . . . . . . . 9
| |
| 26 | 24, 25 | ler2an 173 |
. . . . . . . 8
|
| 27 | ancom 74 |
. . . . . . . 8
| |
| 28 | u2lemanb 616 |
. . . . . . . 8
| |
| 29 | 26, 27, 28 | le3tr1 140 |
. . . . . . 7
|
| 30 | 29 | lelor 166 |
. . . . . 6
|
| 31 | orabs 120 |
. . . . . 6
| |
| 32 | 30, 31 | lbtr 139 |
. . . . 5
|
| 33 | 23, 32 | bltr 138 |
. . . 4
|
| 34 | leo 158 |
. . . 4
| |
| 35 | 33, 34 | lebi 145 |
. . 3
|
| 36 | 6, 7, 35 | 3tr 65 |
. 2
|
| 37 | 36 | df-le1 130 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa43v 1028 oa63v 1032 |
| Copyright terms: Public domain | W3C validator |