| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oal42 | Unicode version | ||
| Description: Derivation of Godowski/Greechie Eq. II from Eq. IV. |
| Ref | Expression |
|---|---|
| oal42.1 |
|
| Ref | Expression |
|---|---|
| oal42 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oal42.1 |
. . 3
| |
| 2 | ancom 74 |
. . . . 5
| |
| 3 | u2lemanb 616 |
. . . . 5
| |
| 4 | 2, 3 | ax-r2 36 |
. . . 4
|
| 5 | ancom 74 |
. . . . 5
| |
| 6 | u2lemanb 616 |
. . . . 5
| |
| 7 | 5, 6 | ax-r2 36 |
. . . 4
|
| 8 | 4, 7 | 2or 72 |
. . 3
|
| 9 | 1, 8 | lbtr 139 |
. 2
|
| 10 | lea 160 |
. . 3
| |
| 11 | lea 160 |
. . 3
| |
| 12 | 10, 11 | lel2or 170 |
. 2
|
| 13 | 9, 12 | letr 137 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa43v 1028 oa63v 1032 |
| Copyright terms: Public domain | W3C validator |