| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa4to4u | Unicode version | ||
| Description: A "universal" 4-OA. The hypotheses are the standard proper 4-OA and substitutions into it. |
| Ref | Expression |
|---|---|
| oa4to4u.1 |
|
| oa4to4u.2 |
|
| oa4to4u3 |
|
| oa4to4u.4 |
|
| Ref | Expression |
|---|---|
| oa4to4u |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa4to4u.1 |
. . 3
| |
| 2 | oa4to4u.2 |
. . . . 5
| |
| 3 | 2 | ud1lem0b 256 |
. . . 4
|
| 4 | oa4to4u3 |
. . . . . 6
| |
| 5 | 2, 4 | 2an 79 |
. . . . . . . 8
|
| 6 | 4 | ud1lem0b 256 |
. . . . . . . . 9
|
| 7 | 3, 6 | 2an 79 |
. . . . . . . 8
|
| 8 | 5, 7 | 2or 72 |
. . . . . . 7
|
| 9 | oa4to4u.4 |
. . . . . . . . . 10
| |
| 10 | 2, 9 | 2an 79 |
. . . . . . . . 9
|
| 11 | 9 | ud1lem0b 256 |
. . . . . . . . . 10
|
| 12 | 3, 11 | 2an 79 |
. . . . . . . . 9
|
| 13 | 10, 12 | 2or 72 |
. . . . . . . 8
|
| 14 | 4, 9 | 2an 79 |
. . . . . . . . 9
|
| 15 | 6, 11 | 2an 79 |
. . . . . . . . 9
|
| 16 | 14, 15 | 2or 72 |
. . . . . . . 8
|
| 17 | 13, 16 | 2an 79 |
. . . . . . 7
|
| 18 | 8, 17 | 2or 72 |
. . . . . 6
|
| 19 | 4, 18 | 2an 79 |
. . . . 5
|
| 20 | 2, 19 | 2or 72 |
. . . 4
|
| 21 | 3, 20 | 2an 79 |
. . 3
|
| 22 | 2 | ran 78 |
. . . . 5
|
| 23 | 4 | ran 78 |
. . . . 5
|
| 24 | 22, 23 | 2or 72 |
. . . 4
|
| 25 | 9 | ran 78 |
. . . 4
|
| 26 | 24, 25 | 2or 72 |
. . 3
|
| 27 | 1, 21, 26 | le3tr2 141 |
. 2
|
| 28 | u1lem11 780 |
. . 3
| |
| 29 | ax-a2 31 |
. . . . . . 7
| |
| 30 | u1lem11 780 |
. . . . . . . . 9
| |
| 31 | 28, 30 | 2an 79 |
. . . . . . . 8
|
| 32 | 31 | ax-r5 38 |
. . . . . . 7
|
| 33 | 29, 32 | ax-r2 36 |
. . . . . 6
|
| 34 | ax-a2 31 |
. . . . . . . 8
| |
| 35 | u1lem11 780 |
. . . . . . . . . 10
| |
| 36 | 28, 35 | 2an 79 |
. . . . . . . . 9
|
| 37 | 36 | ax-r5 38 |
. . . . . . . 8
|
| 38 | 34, 37 | ax-r2 36 |
. . . . . . 7
|
| 39 | ax-a2 31 |
. . . . . . . 8
| |
| 40 | 30, 35 | 2an 79 |
. . . . . . . . 9
|
| 41 | 40 | ax-r5 38 |
. . . . . . . 8
|
| 42 | 39, 41 | ax-r2 36 |
. . . . . . 7
|
| 43 | 38, 42 | 2an 79 |
. . . . . 6
|
| 44 | 33, 43 | 2or 72 |
. . . . 5
|
| 45 | 44 | lan 77 |
. . . 4
|
| 46 | 45 | lor 70 |
. . 3
|
| 47 | 28, 46 | 2an 79 |
. 2
|
| 48 | u1lemab 610 |
. . . . 5
| |
| 49 | u1lem8 776 |
. . . . . . 7
| |
| 50 | ax-a2 31 |
. . . . . . 7
| |
| 51 | ax-a1 30 |
. . . . . . . . 9
| |
| 52 | 51 | ran 78 |
. . . . . . . 8
|
| 53 | 52 | lor 70 |
. . . . . . 7
|
| 54 | 49, 50, 53 | 3tr 65 |
. . . . . 6
|
| 55 | 54 | ax-r1 35 |
. . . . 5
|
| 56 | 48, 55 | ax-r2 36 |
. . . 4
|
| 57 | u1lemab 610 |
. . . . 5
| |
| 58 | u1lem8 776 |
. . . . . . 7
| |
| 59 | ax-a2 31 |
. . . . . . 7
| |
| 60 | ax-a1 30 |
. . . . . . . . 9
| |
| 61 | 60 | ran 78 |
. . . . . . . 8
|
| 62 | 61 | lor 70 |
. . . . . . 7
|
| 63 | 58, 59, 62 | 3tr 65 |
. . . . . 6
|
| 64 | 63 | ax-r1 35 |
. . . . 5
|
| 65 | 57, 64 | ax-r2 36 |
. . . 4
|
| 66 | 56, 65 | 2or 72 |
. . 3
|
| 67 | u1lemab 610 |
. . . 4
| |
| 68 | u1lem8 776 |
. . . . . 6
| |
| 69 | ax-a2 31 |
. . . . . 6
| |
| 70 | ax-a1 30 |
. . . . . . . 8
| |
| 71 | 70 | ran 78 |
. . . . . . 7
|
| 72 | 71 | lor 70 |
. . . . . 6
|
| 73 | 68, 69, 72 | 3tr 65 |
. . . . 5
|
| 74 | 73 | ax-r1 35 |
. . . 4
|
| 75 | 67, 74 | ax-r2 36 |
. . 3
|
| 76 | 66, 75 | 2or 72 |
. 2
|
| 77 | 27, 47, 76 | le3tr2 141 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa4to4u2 974 |
| Copyright terms: Public domain | W3C validator |