| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u1lemab | Unicode version | ||
| Description: Lemma for Sasaki implication study. Equation 4.10 of [MegPav2000] p. 23. This is the second part of the equation. |
| Ref | Expression |
|---|---|
| u1lemab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 |
. . 3
| |
| 2 | 1 | ran 78 |
. 2
|
| 3 | ax-a2 31 |
. . . . 5
| |
| 4 | 3 | ran 78 |
. . . 4
|
| 5 | coman2 186 |
. . . . 5
| |
| 6 | coman1 185 |
. . . . . 6
| |
| 7 | 6 | comcom2 183 |
. . . . 5
|
| 8 | 5, 7 | fh2r 474 |
. . . 4
|
| 9 | 4, 8 | ax-r2 36 |
. . 3
|
| 10 | anass 76 |
. . . . 5
| |
| 11 | anidm 111 |
. . . . . 6
| |
| 12 | 11 | lan 77 |
. . . . 5
|
| 13 | 10, 12 | ax-r2 36 |
. . . 4
|
| 14 | 13 | ax-r5 38 |
. . 3
|
| 15 | 9, 14 | ax-r2 36 |
. 2
|
| 16 | 2, 15 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u1lemnonb 675 i1com 708 u1lem3 749 u1lem11 780 sadm3 838 negantlem2 849 negantlem3 850 negantlem10 861 neg3antlem1 864 oa4to4u 973 oa3-6lem 980 oa3-u1lem 985 oa3-u2lem 986 oa3-1to5 993 lem4.6.2e2 1081 |
| Copyright terms: Public domain | W3C validator |