| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oa4to6 | Unicode version | ||
| Description: Orthoarguesian law (4-variable to 6-variable proof). The first 3 hypotheses are those for 6-OA. The next 4 are variable substitutions into 4-OA. The last is the 4-OA. The proof uses OM logic only. |
| Ref | Expression |
|---|---|
| oa4to6.oa6.1 |
|
| oa4to6.oa6.2 |
|
| oa4to6.oa6.3 |
|
| oa4to6.4 |
|
| oa4to6.5 |
|
| oa4to6.6 |
|
| oa4to6.7 |
|
| oa4to6.oa4 |
|
| Ref | Expression |
|---|---|
| oa4to6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oa4to6.oa6.1 |
. . . . 5
| |
| 2 | 1 | lecon3 157 |
. . . 4
|
| 3 | 2 | lecon 154 |
. . 3
|
| 4 | oa4to6.oa6.2 |
. . . . 5
| |
| 5 | 4 | lecon3 157 |
. . . 4
|
| 6 | 5 | lecon 154 |
. . 3
|
| 7 | oa4to6.oa6.3 |
. . . . 5
| |
| 8 | 7 | lecon3 157 |
. . . 4
|
| 9 | 8 | lecon 154 |
. . 3
|
| 10 | id 59 |
. . 3
| |
| 11 | oa4to6.oa4 |
. . . 4
| |
| 12 | oa4to6.5 |
. . . . . 6
| |
| 13 | oa4to6.4 |
. . . . . 6
| |
| 14 | 12, 13 | ud1lem0ab 257 |
. . . . 5
|
| 15 | oa4to6.6 |
. . . . . . 7
| |
| 16 | 12, 15 | 2an 79 |
. . . . . . . . 9
|
| 17 | 15, 13 | ud1lem0ab 257 |
. . . . . . . . . 10
|
| 18 | 14, 17 | 2an 79 |
. . . . . . . . 9
|
| 19 | 16, 18 | 2or 72 |
. . . . . . . 8
|
| 20 | oa4to6.7 |
. . . . . . . . . . 11
| |
| 21 | 12, 20 | 2an 79 |
. . . . . . . . . 10
|
| 22 | 20, 13 | ud1lem0ab 257 |
. . . . . . . . . . 11
|
| 23 | 14, 22 | 2an 79 |
. . . . . . . . . 10
|
| 24 | 21, 23 | 2or 72 |
. . . . . . . . 9
|
| 25 | 15, 20 | 2an 79 |
. . . . . . . . . 10
|
| 26 | 17, 22 | 2an 79 |
. . . . . . . . . 10
|
| 27 | 25, 26 | 2or 72 |
. . . . . . . . 9
|
| 28 | 24, 27 | 2an 79 |
. . . . . . . 8
|
| 29 | 19, 28 | 2or 72 |
. . . . . . 7
|
| 30 | 15, 29 | 2an 79 |
. . . . . 6
|
| 31 | 12, 30 | 2or 72 |
. . . . 5
|
| 32 | 14, 31 | 2an 79 |
. . . 4
|
| 33 | 11, 32, 13 | le3tr2 141 |
. . 3
|
| 34 | 3, 6, 9, 10, 33 | oa4to6dual 964 |
. 2
|
| 35 | 34 | oa6fromdual 953 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oa3-2to2s 990 d6oa 997 oa6 1036 |
| Copyright terms: Public domain | W3C validator |