| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > sa5 | Unicode version | ||
| Description: Possible axiom for a "Sasaki algebra" for orthoarguesian lattices. |
| Ref | Expression |
|---|---|
| sa5.1 |
|
| Ref | Expression |
|---|---|
| sa5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leor 159 |
. . . . 5
| |
| 2 | ax-a2 31 |
. . . . . . . . . 10
| |
| 3 | 2 | lan 77 |
. . . . . . . . 9
|
| 4 | 3 | ax-r5 38 |
. . . . . . . 8
|
| 5 | ax-a2 31 |
. . . . . . . 8
| |
| 6 | oml6 488 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | 3tr 65 |
. . . . . . 7
|
| 8 | 7 | ax-r1 35 |
. . . . . 6
|
| 9 | sa5.1 |
. . . . . . . . . 10
| |
| 10 | 9 | lecon 154 |
. . . . . . . . 9
|
| 11 | ud1lem0c 277 |
. . . . . . . . 9
| |
| 12 | ud1lem0c 277 |
. . . . . . . . 9
| |
| 13 | 10, 11, 12 | le3tr2 141 |
. . . . . . . 8
|
| 14 | lea 160 |
. . . . . . . 8
| |
| 15 | 13, 14 | letr 137 |
. . . . . . 7
|
| 16 | 15 | leror 152 |
. . . . . 6
|
| 17 | 8, 16 | bltr 138 |
. . . . 5
|
| 18 | 1, 17 | letr 137 |
. . . 4
|
| 19 | ax-a1 30 |
. . . 4
| |
| 20 | ax-a1 30 |
. . . . . 6
| |
| 21 | ax-a2 31 |
. . . . . . 7
| |
| 22 | orabs 120 |
. . . . . . 7
| |
| 23 | ancom 74 |
. . . . . . . 8
| |
| 24 | 23 | ax-r5 38 |
. . . . . . 7
|
| 25 | 21, 22, 24 | 3tr2 64 |
. . . . . 6
|
| 26 | 20, 25 | 2or 72 |
. . . . 5
|
| 27 | ax-a3 32 |
. . . . . 6
| |
| 28 | 27 | ax-r1 35 |
. . . . 5
|
| 29 | 26, 28 | ax-r2 36 |
. . . 4
|
| 30 | 18, 19, 29 | le3tr2 141 |
. . 3
|
| 31 | lear 161 |
. . . 4
| |
| 32 | leor 159 |
. . . 4
| |
| 33 | 31, 32 | letr 137 |
. . 3
|
| 34 | 30, 33 | lel2or 170 |
. 2
|
| 35 | df-i1 44 |
. 2
| |
| 36 | df-i1 44 |
. . 3
| |
| 37 | 36 | ax-r5 38 |
. 2
|
| 38 | 34, 35, 37 | le3tr1 140 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |