| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ska4 | Unicode version | ||
| Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA4. |
| Ref | Expression |
|---|---|
| ska4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnb 95 |
. . 3
| |
| 2 | dfb 94 |
. . 3
| |
| 3 | 1, 2 | 2or 72 |
. 2
|
| 4 | ax-a2 31 |
. 2
| |
| 5 | ax-a3 32 |
. . 3
| |
| 6 | le1 146 |
. . . . . . . . 9
| |
| 7 | df-t 41 |
. . . . . . . . . . 11
| |
| 8 | oran 87 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | lor 70 |
. . . . . . . . . . . 12
|
| 10 | 9 | ax-r1 35 |
. . . . . . . . . . 11
|
| 11 | 7, 10 | ax-r2 36 |
. . . . . . . . . 10
|
| 12 | lea 160 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | lecon 154 |
. . . . . . . . . . . 12
|
| 14 | lea 160 |
. . . . . . . . . . . . 13
| |
| 15 | 14 | lecon 154 |
. . . . . . . . . . . 12
|
| 16 | 13, 15 | le2an 169 |
. . . . . . . . . . 11
|
| 17 | 16 | leror 152 |
. . . . . . . . . 10
|
| 18 | 11, 17 | bltr 138 |
. . . . . . . . 9
|
| 19 | 6, 18 | lebi 145 |
. . . . . . . 8
|
| 20 | 19 | ran 78 |
. . . . . . 7
|
| 21 | ancom 74 |
. . . . . . 7
| |
| 22 | an1 106 |
. . . . . . 7
| |
| 23 | 20, 21, 22 | 3tr 65 |
. . . . . 6
|
| 24 | 23 | lor 70 |
. . . . 5
|
| 25 | le1 146 |
. . . . . 6
| |
| 26 | df-t 41 |
. . . . . . . 8
| |
| 27 | anandir 115 |
. . . . . . . . 9
| |
| 28 | oran3 93 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | ax-r5 38 |
. . . . . . . . . . . 12
|
| 30 | oran3 93 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . 11
|
| 32 | 31 | ax-r1 35 |
. . . . . . . . . 10
|
| 33 | ax-a2 31 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | ax-r2 36 |
. . . . . . . . 9
|
| 35 | 27, 34 | 2or 72 |
. . . . . . . 8
|
| 36 | 26, 35 | ax-r2 36 |
. . . . . . 7
|
| 37 | lear 161 |
. . . . . . . . . . 11
| |
| 38 | 37 | lecon 154 |
. . . . . . . . . 10
|
| 39 | lear 161 |
. . . . . . . . . . 11
| |
| 40 | 39 | lecon 154 |
. . . . . . . . . 10
|
| 41 | 38, 40 | ler2an 173 |
. . . . . . . . 9
|
| 42 | 41 | leror 152 |
. . . . . . . 8
|
| 43 | 42 | lelor 166 |
. . . . . . 7
|
| 44 | 36, 43 | bltr 138 |
. . . . . 6
|
| 45 | 25, 44 | lebi 145 |
. . . . 5
|
| 46 | 24, 45 | ax-r2 36 |
. . . 4
|
| 47 | wlea 388 |
. . . . . . . . . . 11
| |
| 48 | wleo 387 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | wletr 396 |
. . . . . . . . . 10
|
| 50 | 49 | wlecom 409 |
. . . . . . . . 9
|
| 51 | 50 | wcomcom 414 |
. . . . . . . 8
|
| 52 | 51 | wcomcom2 415 |
. . . . . . 7
|
| 53 | wlea 388 |
. . . . . . . . . . 11
| |
| 54 | wleo 387 |
. . . . . . . . . . . 12
| |
| 55 | ax-a2 31 |
. . . . . . . . . . . . 13
| |
| 56 | 55 | bi1 118 |
. . . . . . . . . . . 12
|
| 57 | 54, 56 | wlbtr 398 |
. . . . . . . . . . 11
|
| 58 | 53, 57 | wletr 396 |
. . . . . . . . . 10
|
| 59 | 58 | wlecom 409 |
. . . . . . . . 9
|
| 60 | 59 | wcomcom 414 |
. . . . . . . 8
|
| 61 | 60 | wcomcom2 415 |
. . . . . . 7
|
| 62 | 52, 61 | wcom2an 428 |
. . . . . 6
|
| 63 | wcomorr 412 |
. . . . . . . . 9
| |
| 64 | 63 | wcomcom 414 |
. . . . . . . 8
|
| 65 | 64 | wcomcom2 415 |
. . . . . . 7
|
| 66 | wcomorr 412 |
. . . . . . . . . 10
| |
| 67 | 66, 56 | wcbtr 411 |
. . . . . . . . 9
|
| 68 | 67 | wcomcom 414 |
. . . . . . . 8
|
| 69 | 68 | wcomcom2 415 |
. . . . . . 7
|
| 70 | 65, 69 | wcom2or 427 |
. . . . . 6
|
| 71 | 62, 70 | wfh4 426 |
. . . . 5
|
| 72 | 71 | wlor 368 |
. . . 4
|
| 73 | 46, 72 | wwbmpr 206 |
. . 3
|
| 74 | 5, 73 | ax-r2 36 |
. 2
|
| 75 | 3, 4, 74 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wom2 434 u3lemax4 796 |
| Copyright terms: Public domain | W3C validator |