| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wcom2or | Unicode version | ||
| Description: Th. 4.2 Beran p. 49. |
| Ref | Expression |
|---|---|
| wfh.1 |
|
| wfh.2 |
|
| Ref | Expression |
|---|---|
| wcom2or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfh.1 |
. . . . . . . . 9
| |
| 2 | 1 | wcomcom 414 |
. . . . . . . 8
|
| 3 | 2 | wdf-c2 384 |
. . . . . . 7
|
| 4 | ancom 74 |
. . . . . . . . 9
| |
| 5 | ancom 74 |
. . . . . . . . 9
| |
| 6 | 4, 5 | 2or 72 |
. . . . . . . 8
|
| 7 | 6 | bi1 118 |
. . . . . . 7
|
| 8 | 3, 7 | wr2 371 |
. . . . . 6
|
| 9 | wfh.2 |
. . . . . . . . 9
| |
| 10 | 9 | wcomcom 414 |
. . . . . . . 8
|
| 11 | 10 | wdf-c2 384 |
. . . . . . 7
|
| 12 | ancom 74 |
. . . . . . . . 9
| |
| 13 | ancom 74 |
. . . . . . . . 9
| |
| 14 | 12, 13 | 2or 72 |
. . . . . . . 8
|
| 15 | 14 | bi1 118 |
. . . . . . 7
|
| 16 | 11, 15 | wr2 371 |
. . . . . 6
|
| 17 | 8, 16 | w2or 372 |
. . . . 5
|
| 18 | or4 84 |
. . . . . 6
| |
| 19 | 18 | bi1 118 |
. . . . 5
|
| 20 | 17, 19 | wr2 371 |
. . . 4
|
| 21 | ancom 74 |
. . . . . . . 8
| |
| 22 | 21 | bi1 118 |
. . . . . . 7
|
| 23 | 1, 9 | wfh1 423 |
. . . . . . 7
|
| 24 | 22, 23 | wr2 371 |
. . . . . 6
|
| 25 | ancom 74 |
. . . . . . . 8
| |
| 26 | 25 | bi1 118 |
. . . . . . 7
|
| 27 | 1 | wcomcom3 416 |
. . . . . . . 8
|
| 28 | 9 | wcomcom3 416 |
. . . . . . . 8
|
| 29 | 27, 28 | wfh1 423 |
. . . . . . 7
|
| 30 | 26, 29 | wr2 371 |
. . . . . 6
|
| 31 | 24, 30 | w2or 372 |
. . . . 5
|
| 32 | 31 | wr1 197 |
. . . 4
|
| 33 | 20, 32 | wr2 371 |
. . 3
|
| 34 | 33 | wdf-c1 383 |
. 2
|
| 35 | 34 | wcomcom 414 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-le 129 df-le1 130 df-le2 131 df-cmtr 134 |
| This theorem is referenced by: wcom2an 428 ska2 432 ska4 433 |
| Copyright terms: Public domain | W3C validator |