| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u3lemax5 | Unicode version | ||
| Description: Possible axiom for Kalmbach implication system. |
| Ref | Expression |
|---|---|
| u3lemax5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lem4 511 |
. 2
| |
| 2 | lem4 511 |
. . . . 5
| |
| 3 | lem4 511 |
. . . . . . 7
| |
| 4 | lem4 511 |
. . . . . . . . 9
| |
| 5 | 4 | lor 70 |
. . . . . . . 8
|
| 6 | ax-a3 32 |
. . . . . . . . . 10
| |
| 7 | 6 | ax-r1 35 |
. . . . . . . . 9
|
| 8 | oran3 93 |
. . . . . . . . . . 11
| |
| 9 | u3lembi 723 |
. . . . . . . . . . . 12
| |
| 10 | 9 | ax-r4 37 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | ax-r2 36 |
. . . . . . . . . 10
|
| 12 | 11 | ax-r5 38 |
. . . . . . . . 9
|
| 13 | 7, 12 | ax-r2 36 |
. . . . . . . 8
|
| 14 | 5, 13 | ax-r2 36 |
. . . . . . 7
|
| 15 | 3, 14 | ax-r2 36 |
. . . . . 6
|
| 16 | 15 | lor 70 |
. . . . 5
|
| 17 | 2, 16 | ax-r2 36 |
. . . 4
|
| 18 | 17 | lor 70 |
. . 3
|
| 19 | ax-a3 32 |
. . . . 5
| |
| 20 | 19 | ax-r1 35 |
. . . 4
|
| 21 | oran3 93 |
. . . . . . 7
| |
| 22 | u3lembi 723 |
. . . . . . . 8
| |
| 23 | 22 | ax-r4 37 |
. . . . . . 7
|
| 24 | 21, 23 | ax-r2 36 |
. . . . . 6
|
| 25 | 24 | ax-r5 38 |
. . . . 5
|
| 26 | le1 146 |
. . . . . 6
| |
| 27 | ska2 432 |
. . . . . . . 8
| |
| 28 | 27 | ax-r1 35 |
. . . . . . 7
|
| 29 | u3lembi 723 |
. . . . . . . . . . 11
| |
| 30 | 29 | ax-r1 35 |
. . . . . . . . . 10
|
| 31 | lea 160 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | bltr 138 |
. . . . . . . . 9
|
| 33 | 32 | lelor 166 |
. . . . . . . 8
|
| 34 | 33 | lelor 166 |
. . . . . . 7
|
| 35 | 28, 34 | bltr 138 |
. . . . . 6
|
| 36 | 26, 35 | lebi 145 |
. . . . 5
|
| 37 | 25, 36 | ax-r2 36 |
. . . 4
|
| 38 | 20, 37 | ax-r2 36 |
. . 3
|
| 39 | 18, 38 | ax-r2 36 |
. 2
|
| 40 | 1, 39 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wom 361 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-i2 45 df-i3 46 df-le 129 df-le1 130 df-le2 131 df-c1 132 df-c2 133 df-cmtr 134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |