| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u4lemaa | Unicode version | ||
| Description: Lemma for non-tollens implication study. |
| Ref | Expression |
|---|---|
| u4lemaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. . 3
| |
| 2 | 1 | ran 78 |
. 2
|
| 3 | comanr1 464 |
. . . . . 6
| |
| 4 | comanr1 464 |
. . . . . . 7
| |
| 5 | 4 | comcom6 459 |
. . . . . 6
|
| 6 | 3, 5 | com2or 483 |
. . . . 5
|
| 7 | 6 | comcom 453 |
. . . 4
|
| 8 | 3 | comcom3 454 |
. . . . . . . 8
|
| 9 | 8, 4 | com2or 483 |
. . . . . . 7
|
| 10 | 9 | comcom 453 |
. . . . . 6
|
| 11 | comanr2 465 |
. . . . . . . 8
| |
| 12 | comanr2 465 |
. . . . . . . 8
| |
| 13 | 11, 12 | com2or 483 |
. . . . . . 7
|
| 14 | 13 | comcom 453 |
. . . . . 6
|
| 15 | 10, 14 | com2or 483 |
. . . . 5
|
| 16 | 14 | comcom2 183 |
. . . . 5
|
| 17 | 15, 16 | com2an 484 |
. . . 4
|
| 18 | 7, 17 | fh2r 474 |
. . 3
|
| 19 | 3, 5 | fh1r 473 |
. . . . . 6
|
| 20 | an32 83 |
. . . . . . . . 9
| |
| 21 | anidm 111 |
. . . . . . . . . 10
| |
| 22 | 21 | ran 78 |
. . . . . . . . 9
|
| 23 | 20, 22 | ax-r2 36 |
. . . . . . . 8
|
| 24 | ancom 74 |
. . . . . . . . 9
| |
| 25 | anass 76 |
. . . . . . . . . . 11
| |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . 10
|
| 27 | ancom 74 |
. . . . . . . . . . 11
| |
| 28 | dff 101 |
. . . . . . . . . . . . . 14
| |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . . . 13
|
| 30 | 29 | lan 77 |
. . . . . . . . . . . 12
|
| 31 | an0 108 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . 11
|
| 33 | 27, 32 | ax-r2 36 |
. . . . . . . . . 10
|
| 34 | 26, 33 | ax-r2 36 |
. . . . . . . . 9
|
| 35 | 24, 34 | ax-r2 36 |
. . . . . . . 8
|
| 36 | 23, 35 | 2or 72 |
. . . . . . 7
|
| 37 | or0 102 |
. . . . . . 7
| |
| 38 | 36, 37 | ax-r2 36 |
. . . . . 6
|
| 39 | 19, 38 | ax-r2 36 |
. . . . 5
|
| 40 | anass 76 |
. . . . . 6
| |
| 41 | ancom 74 |
. . . . . . . . 9
| |
| 42 | anor1 88 |
. . . . . . . . 9
| |
| 43 | 41, 42 | ax-r2 36 |
. . . . . . . 8
|
| 44 | 43 | lan 77 |
. . . . . . 7
|
| 45 | dff 101 |
. . . . . . . 8
| |
| 46 | 45 | ax-r1 35 |
. . . . . . 7
|
| 47 | 44, 46 | ax-r2 36 |
. . . . . 6
|
| 48 | 40, 47 | ax-r2 36 |
. . . . 5
|
| 49 | 39, 48 | 2or 72 |
. . . 4
|
| 50 | 49, 37 | ax-r2 36 |
. . 3
|
| 51 | 18, 50 | ax-r2 36 |
. 2
|
| 52 | 2, 51 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u4lemnona 668 u4lem1 737 u4lem5 764 |
| Copyright terms: Public domain | W3C validator |