| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lemaa | Unicode version | ||
| Description: Lemma for relevance implication study. |
| Ref | Expression |
|---|---|
| u5lemaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i5 48 |
. . 3
| |
| 2 | 1 | ran 78 |
. 2
|
| 3 | comanr1 464 |
. . . . 5
| |
| 4 | comanr1 464 |
. . . . . 6
| |
| 5 | 4 | comcom6 459 |
. . . . 5
|
| 6 | 3, 5 | com2or 483 |
. . . 4
|
| 7 | comanr1 464 |
. . . . 5
| |
| 8 | 7 | comcom6 459 |
. . . 4
|
| 9 | 6, 8 | fh1r 473 |
. . 3
|
| 10 | 3, 5 | fh1r 473 |
. . . . . 6
|
| 11 | an32 83 |
. . . . . . . . 9
| |
| 12 | anidm 111 |
. . . . . . . . . 10
| |
| 13 | 12 | ran 78 |
. . . . . . . . 9
|
| 14 | 11, 13 | ax-r2 36 |
. . . . . . . 8
|
| 15 | an32 83 |
. . . . . . . . 9
| |
| 16 | ancom 74 |
. . . . . . . . . 10
| |
| 17 | ancom 74 |
. . . . . . . . . . . . . 14
| |
| 18 | 17 | ax-r1 35 |
. . . . . . . . . . . . 13
|
| 19 | dff 101 |
. . . . . . . . . . . . . 14
| |
| 20 | 19 | ax-r1 35 |
. . . . . . . . . . . . 13
|
| 21 | 18, 20 | ax-r2 36 |
. . . . . . . . . . . 12
|
| 22 | 21 | lan 77 |
. . . . . . . . . . 11
|
| 23 | an0 108 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | ax-r2 36 |
. . . . . . . . . 10
|
| 25 | 16, 24 | ax-r2 36 |
. . . . . . . . 9
|
| 26 | 15, 25 | ax-r2 36 |
. . . . . . . 8
|
| 27 | 14, 26 | 2or 72 |
. . . . . . 7
|
| 28 | or0 102 |
. . . . . . 7
| |
| 29 | 27, 28 | ax-r2 36 |
. . . . . 6
|
| 30 | 10, 29 | ax-r2 36 |
. . . . 5
|
| 31 | ancom 74 |
. . . . 5
| |
| 32 | 30, 31 | 2or 72 |
. . . 4
|
| 33 | 3, 8 | fh4 472 |
. . . . 5
|
| 34 | ax-a2 31 |
. . . . . . . 8
| |
| 35 | orabs 120 |
. . . . . . . 8
| |
| 36 | 34, 35 | ax-r2 36 |
. . . . . . 7
|
| 37 | 36 | ran 78 |
. . . . . 6
|
| 38 | 3, 8 | fh1 469 |
. . . . . . 7
|
| 39 | anass 76 |
. . . . . . . . . . 11
| |
| 40 | 39 | ax-r1 35 |
. . . . . . . . . 10
|
| 41 | 40, 13 | ax-r2 36 |
. . . . . . . . 9
|
| 42 | anass 76 |
. . . . . . . . . . 11
| |
| 43 | 42 | ax-r1 35 |
. . . . . . . . . 10
|
| 44 | ancom 74 |
. . . . . . . . . . 11
| |
| 45 | 19 | lan 77 |
. . . . . . . . . . . . 13
|
| 46 | 45 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 47 | an0 108 |
. . . . . . . . . . . 12
| |
| 48 | 46, 47 | ax-r2 36 |
. . . . . . . . . . 11
|
| 49 | 44, 48 | ax-r2 36 |
. . . . . . . . . 10
|
| 50 | 43, 49 | ax-r2 36 |
. . . . . . . . 9
|
| 51 | 41, 50 | 2or 72 |
. . . . . . . 8
|
| 52 | 51, 28 | ax-r2 36 |
. . . . . . 7
|
| 53 | 38, 52 | ax-r2 36 |
. . . . . 6
|
| 54 | 37, 53 | ax-r2 36 |
. . . . 5
|
| 55 | 33, 54 | ax-r2 36 |
. . . 4
|
| 56 | 32, 55 | ax-r2 36 |
. . 3
|
| 57 | 9, 56 | ax-r2 36 |
. 2
|
| 58 | 2, 57 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u5lemnona 669 u5lembi 725 |
| Copyright terms: Public domain | W3C validator |