| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u4lemana | Unicode version | ||
| Description: Lemma for non-tollens implication study. |
| Ref | Expression |
|---|---|
| u4lemana |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. . 3
| |
| 2 | 1 | ran 78 |
. 2
|
| 3 | comanr1 464 |
. . . . . . 7
| |
| 4 | 3 | comcom3 454 |
. . . . . 6
|
| 5 | comanr1 464 |
. . . . . 6
| |
| 6 | 4, 5 | com2or 483 |
. . . . 5
|
| 7 | 6 | comcom 453 |
. . . 4
|
| 8 | comor1 461 |
. . . . . . . . 9
| |
| 9 | 8 | comcom7 460 |
. . . . . . . 8
|
| 10 | comor2 462 |
. . . . . . . 8
| |
| 11 | 9, 10 | com2an 484 |
. . . . . . 7
|
| 12 | 8, 10 | com2an 484 |
. . . . . . 7
|
| 13 | 11, 12 | com2or 483 |
. . . . . 6
|
| 14 | 13 | comcom 453 |
. . . . 5
|
| 15 | comanr2 465 |
. . . . . . . 8
| |
| 16 | 15 | comcom3 454 |
. . . . . . 7
|
| 17 | comanr2 465 |
. . . . . . . 8
| |
| 18 | 17 | comcom3 454 |
. . . . . . 7
|
| 19 | 16, 18 | com2or 483 |
. . . . . 6
|
| 20 | 19 | comcom 453 |
. . . . 5
|
| 21 | 14, 20 | com2an 484 |
. . . 4
|
| 22 | 7, 21 | fh2r 474 |
. . 3
|
| 23 | 4, 5 | fh1r 473 |
. . . . . 6
|
| 24 | an32 83 |
. . . . . . . . 9
| |
| 25 | ancom 74 |
. . . . . . . . . 10
| |
| 26 | dff 101 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 28 | 27 | lan 77 |
. . . . . . . . . . 11
|
| 29 | an0 108 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | ax-r2 36 |
. . . . . . . . . 10
|
| 31 | 25, 30 | ax-r2 36 |
. . . . . . . . 9
|
| 32 | 24, 31 | ax-r2 36 |
. . . . . . . 8
|
| 33 | an32 83 |
. . . . . . . . 9
| |
| 34 | anidm 111 |
. . . . . . . . . 10
| |
| 35 | 34 | ran 78 |
. . . . . . . . 9
|
| 36 | 33, 35 | ax-r2 36 |
. . . . . . . 8
|
| 37 | 32, 36 | 2or 72 |
. . . . . . 7
|
| 38 | ax-a2 31 |
. . . . . . . 8
| |
| 39 | or0 102 |
. . . . . . . 8
| |
| 40 | 38, 39 | ax-r2 36 |
. . . . . . 7
|
| 41 | 37, 40 | ax-r2 36 |
. . . . . 6
|
| 42 | 23, 41 | ax-r2 36 |
. . . . 5
|
| 43 | an32 83 |
. . . . . 6
| |
| 44 | ancom 74 |
. . . . . . . 8
| |
| 45 | leo 158 |
. . . . . . . . 9
| |
| 46 | 45 | df2le2 136 |
. . . . . . . 8
|
| 47 | 44, 46 | ax-r2 36 |
. . . . . . 7
|
| 48 | 47 | ran 78 |
. . . . . 6
|
| 49 | 43, 48 | ax-r2 36 |
. . . . 5
|
| 50 | 42, 49 | 2or 72 |
. . . 4
|
| 51 | id 59 |
. . . 4
| |
| 52 | 50, 51 | ax-r2 36 |
. . 3
|
| 53 | 22, 52 | ax-r2 36 |
. 2
|
| 54 | 2, 53 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u4lemnoa 663 u4lem5 764 |
| Copyright terms: Public domain | W3C validator |