| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u4lemona | Unicode version | ||
| Description: Lemma for non-tollens implication study. |
| Ref | Expression |
|---|---|
| u4lemona |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. . 3
| |
| 2 | 1 | ax-r5 38 |
. 2
|
| 3 | or32 82 |
. . 3
| |
| 4 | ax-a3 32 |
. . . . . 6
| |
| 5 | lea 160 |
. . . . . . . 8
| |
| 6 | 5 | df-le2 131 |
. . . . . . 7
|
| 7 | 6 | lor 70 |
. . . . . 6
|
| 8 | 4, 7 | ax-r2 36 |
. . . . 5
|
| 9 | 8 | ax-r5 38 |
. . . 4
|
| 10 | comor1 461 |
. . . . . . . . 9
| |
| 11 | 10 | comcom7 460 |
. . . . . . . 8
|
| 12 | comor2 462 |
. . . . . . . 8
| |
| 13 | 11, 12 | com2an 484 |
. . . . . . 7
|
| 14 | 13, 10 | com2or 483 |
. . . . . 6
|
| 15 | 12 | comcom2 183 |
. . . . . 6
|
| 16 | 14, 15 | fh4 472 |
. . . . 5
|
| 17 | lear 161 |
. . . . . . . . . 10
| |
| 18 | leor 159 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | letr 137 |
. . . . . . . . 9
|
| 20 | leo 158 |
. . . . . . . . 9
| |
| 21 | 19, 20 | lel2or 170 |
. . . . . . . 8
|
| 22 | 21 | df-le2 131 |
. . . . . . 7
|
| 23 | ax-a3 32 |
. . . . . . . 8
| |
| 24 | df-a 40 |
. . . . . . . . . . . 12
| |
| 25 | 24 | ax-r1 35 |
. . . . . . . . . . 11
|
| 26 | 25 | con3 68 |
. . . . . . . . . 10
|
| 27 | 26 | lor 70 |
. . . . . . . . 9
|
| 28 | df-t 41 |
. . . . . . . . . 10
| |
| 29 | 28 | ax-r1 35 |
. . . . . . . . 9
|
| 30 | 27, 29 | ax-r2 36 |
. . . . . . . 8
|
| 31 | 23, 30 | ax-r2 36 |
. . . . . . 7
|
| 32 | 22, 31 | 2an 79 |
. . . . . 6
|
| 33 | an1 106 |
. . . . . 6
| |
| 34 | 32, 33 | ax-r2 36 |
. . . . 5
|
| 35 | 16, 34 | ax-r2 36 |
. . . 4
|
| 36 | 9, 35 | ax-r2 36 |
. . 3
|
| 37 | 3, 36 | ax-r2 36 |
. 2
|
| 38 | 2, 37 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: u4lemnaa 643 u4lem5 764 |
| Copyright terms: Public domain | W3C validator |