| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u5lembi | Unicode version | ||
| Description: Relevance implication and biconditional. |
| Ref | Expression |
|---|---|
| u5lembi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | u5lemc1b 685 |
. . . . . . 7
| |
| 2 | 1 | comcom 453 |
. . . . . 6
|
| 3 | u5lemc1 684 |
. . . . . . 7
| |
| 4 | 3 | comcom 453 |
. . . . . 6
|
| 5 | 2, 4 | com2an 484 |
. . . . 5
|
| 6 | 2 | comcom2 183 |
. . . . . 6
|
| 7 | 6, 4 | com2an 484 |
. . . . 5
|
| 8 | 5, 7 | com2or 483 |
. . . 4
|
| 9 | 4 | comcom2 183 |
. . . . 5
|
| 10 | 6, 9 | com2an 484 |
. . . 4
|
| 11 | 8, 10 | fh1 469 |
. . 3
|
| 12 | 5, 7 | fh1 469 |
. . . . . 6
|
| 13 | ancom 74 |
. . . . . . . . 9
| |
| 14 | ancom 74 |
. . . . . . . . . . 11
| |
| 15 | df-i5 48 |
. . . . . . . . . . . 12
| |
| 16 | ax-a3 32 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . . . . 11
|
| 18 | 14, 17 | 2an 79 |
. . . . . . . . . 10
|
| 19 | anabs 121 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . 9
|
| 21 | 13, 20 | ax-r2 36 |
. . . . . . . 8
|
| 22 | anandi 114 |
. . . . . . . . 9
| |
| 23 | u5lemanb 619 |
. . . . . . . . . . 11
| |
| 24 | u5lemaa 604 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | 2an 79 |
. . . . . . . . . 10
|
| 26 | ancom 74 |
. . . . . . . . . . 11
| |
| 27 | an4 86 |
. . . . . . . . . . . 12
| |
| 28 | dff 101 |
. . . . . . . . . . . . . . 15
| |
| 29 | 28 | ax-r1 35 |
. . . . . . . . . . . . . 14
|
| 30 | 29 | lan 77 |
. . . . . . . . . . . . 13
|
| 31 | an0 108 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | ax-r2 36 |
. . . . . . . . . . . 12
|
| 33 | 27, 32 | ax-r2 36 |
. . . . . . . . . . 11
|
| 34 | 26, 33 | ax-r2 36 |
. . . . . . . . . 10
|
| 35 | 25, 34 | ax-r2 36 |
. . . . . . . . 9
|
| 36 | 22, 35 | ax-r2 36 |
. . . . . . . 8
|
| 37 | 21, 36 | 2or 72 |
. . . . . . 7
|
| 38 | or0 102 |
. . . . . . 7
| |
| 39 | 37, 38 | ax-r2 36 |
. . . . . 6
|
| 40 | 12, 39 | ax-r2 36 |
. . . . 5
|
| 41 | ancom 74 |
. . . . . 6
| |
| 42 | ancom 74 |
. . . . . . . 8
| |
| 43 | ax-a2 31 |
. . . . . . . . 9
| |
| 44 | 15, 43 | ax-r2 36 |
. . . . . . . 8
|
| 45 | 42, 44 | 2an 79 |
. . . . . . 7
|
| 46 | anabs 121 |
. . . . . . 7
| |
| 47 | 45, 46 | ax-r2 36 |
. . . . . 6
|
| 48 | 41, 47 | ax-r2 36 |
. . . . 5
|
| 49 | 40, 48 | 2or 72 |
. . . 4
|
| 50 | id 59 |
. . . 4
| |
| 51 | 49, 50 | ax-r2 36 |
. . 3
|
| 52 | 11, 51 | ax-r2 36 |
. 2
|
| 53 | df-i5 48 |
. . 3
| |
| 54 | 53 | lan 77 |
. 2
|
| 55 | dfb 94 |
. 2
| |
| 56 | 52, 54, 55 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i5 48 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: oago3.21x 890 |
| Copyright terms: Public domain | W3C validator |