| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud3lem1 | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud3lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i3 46 |
. 2
| |
| 2 | ud3lem1a 566 |
. . . . . 6
| |
| 3 | ud3lem1b 567 |
. . . . . 6
| |
| 4 | 2, 3 | 2or 72 |
. . . . 5
|
| 5 | or0 102 |
. . . . 5
| |
| 6 | 4, 5 | ax-r2 36 |
. . . 4
|
| 7 | ud3lem1d 569 |
. . . 4
| |
| 8 | 6, 7 | 2or 72 |
. . 3
|
| 9 | coman1 185 |
. . . . . . 7
| |
| 10 | 9 | comcom2 183 |
. . . . . . . 8
|
| 11 | coman2 186 |
. . . . . . . . 9
| |
| 12 | 11 | comcom7 460 |
. . . . . . . 8
|
| 13 | 10, 12 | com2or 483 |
. . . . . . 7
|
| 14 | 9, 13 | fh3 471 |
. . . . . 6
|
| 15 | ax-a2 31 |
. . . . . . . . 9
| |
| 16 | orabs 120 |
. . . . . . . . 9
| |
| 17 | 15, 16 | ax-r2 36 |
. . . . . . . 8
|
| 18 | ax-a2 31 |
. . . . . . . . 9
| |
| 19 | anor1 88 |
. . . . . . . . . . 11
| |
| 20 | 19 | lor 70 |
. . . . . . . . . 10
|
| 21 | df-t 41 |
. . . . . . . . . . 11
| |
| 22 | 21 | ax-r1 35 |
. . . . . . . . . 10
|
| 23 | 20, 22 | ax-r2 36 |
. . . . . . . . 9
|
| 24 | 18, 23 | ax-r2 36 |
. . . . . . . 8
|
| 25 | 17, 24 | 2an 79 |
. . . . . . 7
|
| 26 | an1 106 |
. . . . . . 7
| |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
|
| 28 | 14, 27 | ax-r2 36 |
. . . . 5
|
| 29 | 28 | lor 70 |
. . . 4
|
| 30 | or12 80 |
. . . 4
| |
| 31 | ax-a2 31 |
. . . 4
| |
| 32 | 29, 30, 31 | 3tr1 63 |
. . 3
|
| 33 | 8, 32 | ax-r2 36 |
. 2
|
| 34 | 1, 33 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud3 597 u3lem11a 787 |
| Copyright terms: Public domain | W3C validator |