| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem1d | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud4lem1c 579 |
. . 3
| |
| 2 | ud4lem0c 280 |
. . 3
| |
| 3 | 1, 2 | 2an 79 |
. 2
|
| 4 | an12 81 |
. . 3
| |
| 5 | ax-a2 31 |
. . . . 5
| |
| 6 | ax-a2 31 |
. . . . 5
| |
| 7 | 5, 6 | 2an 79 |
. . . 4
|
| 8 | comor2 462 |
. . . . . . . . 9
| |
| 9 | 8 | comcom3 454 |
. . . . . . . 8
|
| 10 | 9 | comcom5 458 |
. . . . . . 7
|
| 11 | comor1 461 |
. . . . . . . 8
| |
| 12 | 11 | comcom2 183 |
. . . . . . 7
|
| 13 | 10, 12 | com2an 484 |
. . . . . 6
|
| 14 | 13, 11 | fh1 469 |
. . . . 5
|
| 15 | ax-a2 31 |
. . . . . . . . 9
| |
| 16 | anor1 88 |
. . . . . . . . 9
| |
| 17 | 15, 16 | 2an 79 |
. . . . . . . 8
|
| 18 | dff 101 |
. . . . . . . . 9
| |
| 19 | 18 | ax-r1 35 |
. . . . . . . 8
|
| 20 | 17, 19 | ax-r2 36 |
. . . . . . 7
|
| 21 | ancom 74 |
. . . . . . . 8
| |
| 22 | anabs 121 |
. . . . . . . 8
| |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . 7
|
| 24 | 20, 23 | 2or 72 |
. . . . . 6
|
| 25 | ax-a2 31 |
. . . . . . 7
| |
| 26 | or0 102 |
. . . . . . 7
| |
| 27 | 25, 26 | ax-r2 36 |
. . . . . 6
|
| 28 | 24, 27 | ax-r2 36 |
. . . . 5
|
| 29 | 14, 28 | ax-r2 36 |
. . . 4
|
| 30 | 7, 29 | 2an 79 |
. . 3
|
| 31 | 4, 30 | ax-r2 36 |
. 2
|
| 32 | 3, 31 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud4lem1 581 |
| Copyright terms: Public domain | W3C validator |