| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem0c | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem0c |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. . 3
| |
| 2 | oran 87 |
. . . 4
| |
| 3 | oran 87 |
. . . . . . . 8
| |
| 4 | df-a 40 |
. . . . . . . . . . 11
| |
| 5 | 4 | con2 67 |
. . . . . . . . . 10
|
| 6 | anor2 89 |
. . . . . . . . . . 11
| |
| 7 | 6 | con2 67 |
. . . . . . . . . 10
|
| 8 | 5, 7 | 2an 79 |
. . . . . . . . 9
|
| 9 | 8 | ax-r4 37 |
. . . . . . . 8
|
| 10 | 3, 9 | ax-r2 36 |
. . . . . . 7
|
| 11 | 10 | con2 67 |
. . . . . 6
|
| 12 | anor1 88 |
. . . . . . . 8
| |
| 13 | anor1 88 |
. . . . . . . . . . 11
| |
| 14 | 13 | ax-r1 35 |
. . . . . . . . . 10
|
| 15 | 14 | ax-r5 38 |
. . . . . . . . 9
|
| 16 | 15 | ax-r4 37 |
. . . . . . . 8
|
| 17 | 12, 16 | ax-r2 36 |
. . . . . . 7
|
| 18 | 17 | con2 67 |
. . . . . 6
|
| 19 | 11, 18 | 2an 79 |
. . . . 5
|
| 20 | 19 | ax-r4 37 |
. . . 4
|
| 21 | 2, 20 | ax-r2 36 |
. . 3
|
| 22 | 1, 21 | ax-r2 36 |
. 2
|
| 23 | 22 | con2 67 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i4 47 |
| This theorem is referenced by: ud4lem1b 578 ud4lem1c 579 ud4lem1d 580 ud4lem3a 583 ud4lem3b 584 u4lem5 764 |
| Copyright terms: Public domain | W3C validator |