| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem2 | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. 2
| |
| 2 | ancom 74 |
. . . . . . 7
| |
| 3 | anabs 121 |
. . . . . . 7
| |
| 4 | 2, 3 | ax-r2 36 |
. . . . . 6
|
| 5 | oran 87 |
. . . . . . . . 9
| |
| 6 | 5 | con2 67 |
. . . . . . . 8
|
| 7 | 6 | ran 78 |
. . . . . . 7
|
| 8 | ancom 74 |
. . . . . . . 8
| |
| 9 | anass 76 |
. . . . . . . . . 10
| |
| 10 | 9 | ax-r1 35 |
. . . . . . . . 9
|
| 11 | ancom 74 |
. . . . . . . . . 10
| |
| 12 | dff 101 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | lan 77 |
. . . . . . . . . . . 12
|
| 14 | 13 | ax-r1 35 |
. . . . . . . . . . 11
|
| 15 | an0 108 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | ax-r2 36 |
. . . . . . . . . 10
|
| 17 | 11, 16 | ax-r2 36 |
. . . . . . . . 9
|
| 18 | 10, 17 | ax-r2 36 |
. . . . . . . 8
|
| 19 | 8, 18 | ax-r2 36 |
. . . . . . 7
|
| 20 | 7, 19 | ax-r2 36 |
. . . . . 6
|
| 21 | 4, 20 | 2or 72 |
. . . . 5
|
| 22 | or0 102 |
. . . . 5
| |
| 23 | 21, 22 | ax-r2 36 |
. . . 4
|
| 24 | ancom 74 |
. . . . 5
| |
| 25 | oran 87 |
. . . . . . . . . . . . 13
| |
| 26 | 25 | ax-r1 35 |
. . . . . . . . . . . 12
|
| 27 | 26 | con3 68 |
. . . . . . . . . . 11
|
| 28 | 27 | lor 70 |
. . . . . . . . . 10
|
| 29 | anor2 89 |
. . . . . . . . . . . 12
| |
| 30 | 29 | ax-r1 35 |
. . . . . . . . . . 11
|
| 31 | 30 | con3 68 |
. . . . . . . . . 10
|
| 32 | 28, 31 | ax-r2 36 |
. . . . . . . . 9
|
| 33 | 32 | con2 67 |
. . . . . . . 8
|
| 34 | 33 | ax-r5 38 |
. . . . . . 7
|
| 35 | comid 187 |
. . . . . . . . . 10
| |
| 36 | 35 | comcom2 183 |
. . . . . . . . 9
|
| 37 | comorr 184 |
. . . . . . . . 9
| |
| 38 | 36, 37 | fh3r 475 |
. . . . . . . 8
|
| 39 | ancom 74 |
. . . . . . . . . 10
| |
| 40 | or32 82 |
. . . . . . . . . . . 12
| |
| 41 | oridm 110 |
. . . . . . . . . . . . 13
| |
| 42 | 41 | ax-r5 38 |
. . . . . . . . . . . 12
|
| 43 | 40, 42 | ax-r2 36 |
. . . . . . . . . . 11
|
| 44 | df-t 41 |
. . . . . . . . . . . . 13
| |
| 45 | ax-a2 31 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | ax-r2 36 |
. . . . . . . . . . . 12
|
| 47 | 46 | ax-r1 35 |
. . . . . . . . . . 11
|
| 48 | 43, 47 | 2an 79 |
. . . . . . . . . 10
|
| 49 | 39, 48 | ax-r2 36 |
. . . . . . . . 9
|
| 50 | an1 106 |
. . . . . . . . 9
| |
| 51 | 49, 50 | ax-r2 36 |
. . . . . . . 8
|
| 52 | 38, 51 | ax-r2 36 |
. . . . . . 7
|
| 53 | 34, 52 | ax-r2 36 |
. . . . . 6
|
| 54 | 53 | lan 77 |
. . . . 5
|
| 55 | 24, 54 | ax-r2 36 |
. . . 4
|
| 56 | 23, 55 | 2or 72 |
. . 3
|
| 57 | oml 445 |
. . 3
| |
| 58 | 56, 57 | ax-r2 36 |
. 2
|
| 59 | 1, 58 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud4 598 |
| Copyright terms: Public domain | W3C validator |