| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem3a | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 76 |
. . 3
| |
| 2 | lea 160 |
. . . . . 6
| |
| 3 | 2 | leror 152 |
. . . . 5
|
| 4 | 3 | df2le2 136 |
. . . 4
|
| 5 | 4 | lan 77 |
. . 3
|
| 6 | 1, 5 | ax-r2 36 |
. 2
|
| 7 | ud4lem0c 280 |
. . 3
| |
| 8 | 7 | ran 78 |
. 2
|
| 9 | 6, 8, 7 | 3tr1 63 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 |
| This theorem is referenced by: ud4lem3 585 |
| Copyright terms: Public domain | W3C validator |