| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem3 | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i4 47 |
. 2
| |
| 2 | ud4lem3a 583 |
. . . . . 6
| |
| 3 | 2 | lor 70 |
. . . . 5
|
| 4 | comid 187 |
. . . . . . . 8
| |
| 5 | 4 | comcom2 183 |
. . . . . . 7
|
| 6 | df-i4 47 |
. . . . . . . 8
| |
| 7 | comor1 461 |
. . . . . . . . . . . 12
| |
| 8 | comor2 462 |
. . . . . . . . . . . 12
| |
| 9 | 7, 8 | com2an 484 |
. . . . . . . . . . 11
|
| 10 | 7 | comcom2 183 |
. . . . . . . . . . . 12
|
| 11 | 10, 8 | com2an 484 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | com2or 483 |
. . . . . . . . . 10
|
| 13 | 10, 8 | com2or 483 |
. . . . . . . . . . 11
|
| 14 | 8 | comcom2 183 |
. . . . . . . . . . 11
|
| 15 | 13, 14 | com2an 484 |
. . . . . . . . . 10
|
| 16 | 12, 15 | com2or 483 |
. . . . . . . . 9
|
| 17 | 16 | comcom 453 |
. . . . . . . 8
|
| 18 | 6, 17 | bctr 181 |
. . . . . . 7
|
| 19 | 5, 18 | fh4r 476 |
. . . . . 6
|
| 20 | ancom 74 |
. . . . . . 7
| |
| 21 | ax-a2 31 |
. . . . . . . . . 10
| |
| 22 | ud4lem3b 584 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . . . 9
|
| 24 | df-t 41 |
. . . . . . . . . 10
| |
| 25 | 24 | ax-r1 35 |
. . . . . . . . 9
|
| 26 | 23, 25 | 2an 79 |
. . . . . . . 8
|
| 27 | an1 106 |
. . . . . . . 8
| |
| 28 | 26, 27 | ax-r2 36 |
. . . . . . 7
|
| 29 | 20, 28 | ax-r2 36 |
. . . . . 6
|
| 30 | 19, 29 | ax-r2 36 |
. . . . 5
|
| 31 | 3, 30 | ax-r2 36 |
. . . 4
|
| 32 | 22 | ran 78 |
. . . . 5
|
| 33 | dff 101 |
. . . . . 6
| |
| 34 | 33 | ax-r1 35 |
. . . . 5
|
| 35 | 32, 34 | ax-r2 36 |
. . . 4
|
| 36 | 31, 35 | 2or 72 |
. . 3
|
| 37 | or0 102 |
. . 3
| |
| 38 | 36, 37 | ax-r2 36 |
. 2
|
| 39 | 1, 38 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud4 598 |
| Copyright terms: Public domain | W3C validator |