| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ud4lem3b | Unicode version | ||
| Description: Lemma for unified disjunction. |
| Ref | Expression |
|---|---|
| ud4lem3b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ud4lem0c 280 |
. . 3
| |
| 2 | 1 | ax-r5 38 |
. 2
|
| 3 | comor1 461 |
. . . . . . 7
| |
| 4 | 3 | comcom2 183 |
. . . . . 6
|
| 5 | comor2 462 |
. . . . . . 7
| |
| 6 | 5 | comcom2 183 |
. . . . . 6
|
| 7 | 4, 6 | com2or 483 |
. . . . 5
|
| 8 | 3, 6 | com2or 483 |
. . . . 5
|
| 9 | 7, 8 | com2an 484 |
. . . 4
|
| 10 | 3, 6 | com2an 484 |
. . . . 5
|
| 11 | 10, 5 | com2or 483 |
. . . 4
|
| 12 | 9, 11 | fh3r 475 |
. . 3
|
| 13 | 7, 8 | fh3r 475 |
. . . . . . 7
|
| 14 | ax-a2 31 |
. . . . . . . . 9
| |
| 15 | or4 84 |
. . . . . . . . . 10
| |
| 16 | df-t 41 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | lor 70 |
. . . . . . . . . . . 12
|
| 18 | 17 | ax-r1 35 |
. . . . . . . . . . 11
|
| 19 | or1 104 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . . 10
|
| 21 | 15, 20 | ax-r2 36 |
. . . . . . . . 9
|
| 22 | 14, 21 | ax-r2 36 |
. . . . . . . 8
|
| 23 | ax-a2 31 |
. . . . . . . . 9
| |
| 24 | or4 84 |
. . . . . . . . . 10
| |
| 25 | 16 | lor 70 |
. . . . . . . . . . . 12
|
| 26 | 25 | ax-r1 35 |
. . . . . . . . . . 11
|
| 27 | or1 104 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | ax-r2 36 |
. . . . . . . . . 10
|
| 29 | 24, 28 | ax-r2 36 |
. . . . . . . . 9
|
| 30 | 23, 29 | ax-r2 36 |
. . . . . . . 8
|
| 31 | 22, 30 | 2an 79 |
. . . . . . 7
|
| 32 | 13, 31 | ax-r2 36 |
. . . . . 6
|
| 33 | an1 106 |
. . . . . 6
| |
| 34 | 32, 33 | ax-r2 36 |
. . . . 5
|
| 35 | lea 160 |
. . . . . . 7
| |
| 36 | 35 | leror 152 |
. . . . . 6
|
| 37 | 36 | df-le2 131 |
. . . . 5
|
| 38 | 34, 37 | 2an 79 |
. . . 4
|
| 39 | ancom 74 |
. . . . 5
| |
| 40 | an1 106 |
. . . . 5
| |
| 41 | 39, 40 | ax-r2 36 |
. . . 4
|
| 42 | 38, 41 | ax-r2 36 |
. . 3
|
| 43 | 12, 42 | ax-r2 36 |
. 2
|
| 44 | 2, 43 | ax-r2 36 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i4 47 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: ud4lem3 585 |
| Copyright terms: Public domain | W3C validator |