| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > wdcom | Unicode version | ||
| Description: Any two variables (weakly) commute in a WDOL. |
| Ref | Expression |
|---|---|
| wdcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cmtr 134 |
. 2
| |
| 2 | or42 85 |
. 2
| |
| 3 | dfb 94 |
. . . . 5
| |
| 4 | dfb 94 |
. . . . . 6
| |
| 5 | ax-a1 30 |
. . . . . . . . 9
| |
| 6 | 5 | lan 77 |
. . . . . . . 8
|
| 7 | 6 | ax-r1 35 |
. . . . . . 7
|
| 8 | 7 | lor 70 |
. . . . . 6
|
| 9 | 4, 8 | ax-r2 36 |
. . . . 5
|
| 10 | 3, 9 | 2or 72 |
. . . 4
|
| 11 | 10 | ax-r1 35 |
. . 3
|
| 12 | ax-wdol 1102 |
. . 3
| |
| 13 | 11, 12 | ax-r2 36 |
. 2
|
| 14 | 1, 2, 13 | 3tr 65 |
1
|
| Colors of variables: term |
| Syntax hints: |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-wdol 1102 |
| This theorem depends on definitions: df-b 39 df-a 40 df-cmtr 134 |
| This theorem is referenced by: wdwom 1104 wddi1 1105 wddi3 1107 |
| Copyright terms: Public domain | W3C validator |